source: t29-www/en/communication/measurement.shtm @ 184

Last change on this file since 184 was 184, checked in by sven, 14 years ago

In allen Dateien im Titel "Technikum29" durch "technikum29" ersetzt.

  • Property svn:keywords set to Id
File size: 8.8 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4<head><!--#set var="title"        value="Measurement and Experimental technology"
5   --><!--#set var="location"     value="messtechnik"
6   --><!--#set var="url_de"       value="kommunikationstechnik/messtechnik.shtm"
7   --><!--#set var="prev"         value="fax.shtm"
8   --><!--#set var="prev_title"   value="Fax engineering"
9   --><!--#set var="next"         value="/en/computer/electro-mechanical.shtm"
10   --><!--#set var="next_title"   value="(Elektro-) mechamical calculators"
11 --><title>technikum29 - <!--#echo var="title" --></title>
12
13    <!--#include virtual="/en/inc/head.inc.shtm" -->
14    <meta name="keywords" lang="de" content="Messtechnik, Spiegelgalvanometer, Szintillationsme&szlig;platz" />
15    <meta name="t29.SVN" content="$Id: measurement.shtm 184 2010-09-01 02:34:56Z sven $" />
16</head>
17<body>
18<!--#echo encoding="none" var="heading" -->
19<div id="content">
20    <h2><!--#echo var="title" --></h2>
21
22    <p>Measurement- and Experimental technology can link Communication and Computer
23       Technology. Measurement technology has a long history and there have been nice and
24       remarkable devices.</p>
25<!--
26    <p>Professionals can see many beautiful measurement devices, from the complex mirror galvanometer (a piece from the German Kaiserzeit) to the scintillation measuring station with counting devices from several epoches (since 1956), used for measurement of radioactivity.</p>
27-->
28
29    <div class="box left clear-after">
30         <img src="/shared/photos/kommunikationstechnik/experimente.jpg" alt="Some of the experimental physics devices" width="396" height="451" class="nomargin-bottom" />
31         <p class="bildtext">
32           This picture shows some devices from the "experimental physics" area. You
33           will probably note the use of "natural" materials (wood, glass, metal) and the
34           well-designed very simplified interface that makes comprehension simple.
35           <br/>We will go into detail for some of the devices shown on the left.
36         </p>
37    </div>
38
39        <h3>Galvanometer</h3> <!-- sic -->
40       
41      <div class="box left clear-after">
42            <img src="/shared/photos/kommunikationstechnik/universalmessgeraet.jpg" alt="Fotografie des Universalmeßgerätes" width="396" height="325" />
43            <p class="bildtext">
44               This is a remarkably functional, big and beautiful all-purpose measurement device made by Siemens &amp; Halske (about 1905). At that time even simple objects of utulity were made lovely detailed. This device was used as auxiliary device for morsing purposes in the national administration of the German Empire.
45            </p>
46      </div>
47     
48      <div class="box right clear-after">
49          <img src="/shared/photos/kommunikationstechnik/galvanometer.jpg" alt="Galvometers" width="321" height="275" />
50          <p class="bildtext">This is only an example from the early measurement technique: any galvanometer from the 20s. The lovely, sumptuous and nice design of the appearance is unmistakable, althought it is only a simple customer equipment.</p>
51      </div>
52
53      <div class="box left clear-after">
54           <img src="/shared/photos/kommunikationstechnik/h&amp;b-galvanometer.jpg" alt="Photography of a mirror galvanometer" width="396" height="436" />
55           <div class="bildtext">
56             <p>Until the invention of measurement amplifiers, measuring very small voltages
57             and currents was a big problem. To do that job, moving coil devices had to be
58             very sensitive. This was realized with a moving coil that was mounted on a
59             torsion wire. The reflecting mirror at the lower end of the wire was spotted by
60             a light ray, so the whole composition acts like a very long "light needle".
61             By this way very long needle lengths (multiple meters) could be simulated.
62             Such a galvanometer must be set up absolutely horizontally and vibration-free.
63             <br/>The <b>Mirror Galvanometer</b> by Hartmann&nbsp;&amp;&nbsp;Braun is
64             a simple and functional demonstration model from the 1920s.</p>
65           </div>
66    </div>
67       
68        <h3>Cathode Ray Tubes</h3>
69
70    <div class="box left clear-after">
71        <img src="/shared/photos/kommunikationstechnik/loewe-kathodenstrahl.jpg" alt="Photography of the cathode ray tube" width="396" height="189" />
72        <p class="bildtext">
73            At the time where there was no television and no oscilloscope yet, the
74            <b>Cathode Ray Tube</b> was a sensation, especially at school. This was one of
75            the very first experiments where students could see that electrons have
76            almost no inertia, so they can be deflected easily at the presence of an
77            electric field.
78            <br/>This tube (with power supply on the left) from the German company
79            <b>Loewe</b> is an historical piece from the 1930s. It measures about
80            50&nbsp;cm!
81        </p>
82   </div>
83
84
85    <!-- paragraph: AEG Oszi. Translated/Started at 28.07.08-->
86    <div class="box left clear-after">
87          <img src="/shared/photos/kommunikationstechnik/aeg-oszi.jpg" alt="Photography of an AEG oscilloscope" width="425" height="419" />
88                  <p class="bildtext">
89              After the currency reform in West Germany, the production
90              of mesurement devices got going again. This <b>AEG
91              oscilloscope</b> was built in 1949. It seems to be an exact
92              replica from an AEG device of the late thirties. It is
93              equipped with steel tubes that were put on the German
94              market at 1938. Neither the time base of the horizontal
95              deflection nor the amplitude of the vertical deflection
96              are callibrated by the manufacturer. To measure
97              absolutely with this device, you always need reference sizes.
98          </p>
99      </div>
100
101      <div class="box left clear-after">
102          <img src="/shared/photos/kommunikationstechnik/phywe-oszi.jpg" alt="Photography of a Phywe demonstration oscilloscope" width="396" height="269" />
103          <p class="bildtext">
104             The "Physikalischen Werkst&auml;tten" (<i>phsyical facilities</i>), <b>Phywe</b>,
105             have built this small oscilloscope for demonstration purposes that can be
106             used to show the electromagnetic interaction of an electron beam in E/B fields.
107             Since (CRT driven) television got a mass medium, these experiments
108             were state-of-art at those days.
109          </p>
110       </div>
111           
112        <h3>Radio engineering</h3>
113
114    <div class="box left clear-after">
115          <img src="/shared/photos/kommunikationstechnik/neva-funktechnik.jpg" alt="Photography of the Neva Experimental system" width="396" height="280" />
116          <p class="bildtext">With the <b>NEVA radio technology system</b>, students could
117            do challenging experiments like measuring the wave lengths in the VHF area
118            with the Lecher lines. <!-- Das mit den 300V ist Bloedsinn, weil die Stroeme
119            niedrig sind => ungefaehrlich. -->
120          </p>
121    </div>
122
123        <h3>Digital experience system</h3>
124       
125    <div class="box left clear-after">
126        <img src="/shared/photos/kommunikationstechnik/digitalexperimentiersystem.jpg" alt="photography of an electronic experimental system for use in schools" width="396" height="509" />
127        <p class="bildtext">This big white board is an experience system from
128          <b>Leybold</b> from the early 1970s. At that time, the subject
129          "digital electonics" was taught in the school. Students could set up
130          logic systems like binary counters, full adders, flip-flops, multiplexer,
131          etc. This was quite fascinating for students at that time. Today, in ordinary
132          schools, there is no more time for electronics in the curriculars.</p>
133    </div>
134       
135        <h3>The world of electronical calculating</h3> <!-- schleim... -->
136
137    <div class="box left clear-after">
138       <img src="/shared/photos/kommunikationstechnik/frequenzzaehler.jpg" alt="Photography of different frequency- and event counters" width="420" height="582" />
139       <p class="bildtext"><b>Calculating requires counting</b>
140         <br/>Last but not least we show a composition of (frequency) counters from
141         different epoches. There are, among others, devices equipped with tubes (57
142         electron tubes) or discrete transistor logic (mostly germanium).
143         The different counting tubes (e.g. E1T or GC10B) and the very different
144         display types are quite impressive.</p>
145    </div>
146       
147</div><!-- end of content -->
148<!--#include virtual="/en/inc/menu.inc.shtm" -->
149</body>
150</html>
Note: See TracBrowser for help on using the repository browser.
© 2008 - 2013 technikum29 • Sven Köppel • Some rights reserved
Powered by Trac
Expect where otherwise noted, content on this site is licensed under a Creative Commons 3.0 License