PROGRAMMING MANUAL

GENERAL PRECISION, INC.

Commercial Computer Division

PROGRAMMING
MANUAL

for the I G P 2 IGeneral Precision Electronic Computer

© 1963, General Precision, Inc.

CONTENTS
Ml I IR RS

Page
INTRODUCTION TO THE LGP-21 i 1-1
1 General 1-1
Computer EIEMENTS. . . .vuss ot ossnssassossiesssaesesssssianssns 1-1
MEIMIOTY . . oottt e et e et e e e e e e e e e 1-2
Arithmetic Unit ...ttt et 1-3
Control Unit.ttt e e e e 1-4
THE LOP-21 COMMAND STRUCTURE, 2-1
Introduction: « . wsswswas v maias o ussimesuemes 5556 ©upm e ssns6s s 2-1
LGP-21 INStructionscouuiiinniiiiiiiieineneenn.. 2-1
Arithmetic Instructionsc.iiiiiriinen... 2-2
A ADD L 2-2
D DIVIDE giivivi:mitisnisnisisasminiininisaions idmnn 2-3
M MULTIPLY i cvwsmosasmosmemesmsssmeswemosgsesnesy 2-3
N MULTIPLY ..o e 2-4
S SUBTRACT .. i 2-4
Logical InStructionsc..cveiuieinniineennennnnnn.. 2-5
E EXTRACT i .55 cvsivirssosmionissasasssingsssnsis 2-5
T CONDITIONAL TRANSFER...........coiiiiiinnnnn.. 2-5
-T TRANSFER CONTROL............ciuiiiiiiiiinnn. 2-6
U UNCONDITIONAL TRANSFERccoivuennn.. 2-6
Z STOP isivassmas osman smanaims mssdsind 6 men wamamess 2-7
Z SENSE BS AND TRANSFERcoviinn.. 2-8
-Z SENSE OVERFLOW AND TRANSFER................. 2-8
Manipulative Instructionsc.coiiiiiiiiainin... 2-9
B BRING.....oii e e e 2-9
€ CLEAR: scs@smasmanassssismsnss s Masissnsnshdsssmny 2-10
H HOLD::w:wsvsvsminssmsossmsnsmismisiasmissnssmsaias 2-10
[6-BIT SHIFT. 2-10
-1 4-BIT SHIFT. e e et 2-10
R SET RETURN ADDRESS0, 2-11
Y STORE ADDRESS i 2-11
Input/Output INStructionsouiiiiiinnernnennn.n. 2-11
[6-BIT INPUT o e 2-11
-1 4-BIT INPUT ... i 2-12
P G-BIT PRINT iso:mesmumostssosssssmsivsaasissssdsss 2-12
- 4:BIT PRINT iivomsuvsmen sy monosssnsnionssansssesses 2-12
CONSTRUCTION OF AN LGP-21 PROGRAM, 3-1
3 LGP-21 Coding Sheetcuuuuiiiieiiiiiiii i, 3-1
The 4-Phase Instruction Cycleuuuuineneneeneenenennnn. 3-3
Sector Reference Timing Trackc..iiiiiiinneennnn... 3-3
Transfer INStTUCLIONS\ttt ettt e e 3-6
Instruction Modification and Looping...............cooiuinniinnn... 3-8
The Y INSEUCHION. . .. oottt ettt ettt 3-11
Initialization.uett et 3-14
Subroutine COMCEPLt vvvtt ittt ettt e 3-15

BINARY NUMBER SYSTEMo
Addition in Binary i
Subtraction in Binary i
Multiplication and Division in Binary.
Negative Numbers
Instruction Words,o
Data WOrds , | .. .ioismsmisssssmesmissssssesnyimguinisssess g6

Binary Data.

Binary-Coded Decimal Dataccooiiiiiinnn.

Alphanumeric Datal .. :.vswinin ssmssvsmpsmmenmsnovommen e
Hexadecimal Notation

NUMBER SCALING FOR THE LGP-21..
S LT T v o wmow v v miw o 5 0 v w0 0 v 0o 0w m s o o

Decimal Constants in a Program
The M and N Instruction

INPUT/OUTPUT Gyuppmomanmumen s mswm e enmmsmeneswee snm oew s e
Input Information 0.t
Character Representation on Tape.............. ... oo,
The Input Instruction..........................¢ e R ER A EEEE BE
Non-=Entering Characters.:icsiwesessnsvensimsismsiwanmsvsoss
The Print Instruction
The Shift Instruction,
Examples of Output Operations.oouuruunnnnaenann.
Input to the Computerttt

Manual Input e

Program-Controlled Input................
Storing Information in Memory. i

Input to Memory from Typewriter

Input to Memory from Tape
LGP-21 Bootstrap

PROGRAM TAPE PREPARATION
Tape Preparation..................iuniinmineininiiinen i
Correction of EITOrS ittt iieeaeanns

TIMING AND OPTIMIZATION it
TAMING v uimesnsmus@imes sy S8 D @I RSREP EBEFUIE e e g o 5 & gowsaya
Toput. TIMING: sswvsaimsosiminvpmesssmimesEymesmimssmessi@ins ey
OQUEPUE THMINE . ¢ 5 s ms mimssms wrsaePa i@ eaes somiowswsn womewemesn

OptImAZALION. ., . cuimis svvimeovisisnsmisavesssvramsmensn nswsms

o
[
¢

B R N S N N L T S S
T
== O NN DWW

:
— = O OWWOOODD U U W — ——

oo

C'DO)C’G?U)O’CD(IJ’G)C?O?G)G)CDG)

\IT'I\)
N = =

COMPUTERCONTROLPANEL e
MOde . . . e e
NORMAL | . e e
ONE OPERATION | it
MANUAL INPUT. . ..o vvnimsvivsmnmssisssimsnasneisiasosasnsmon
FILL CLEAR..
EXECUTE

INPUT/OUTPUT UNIT CONTROLS
POWER ONOFE : cininmimusmsmosmiass@iospii@ipa@emaseisess
START COMPttt e
MANUAL INPUT ... oiieiursmimsrmsnssntaspinsmismansamnmsssan

PUNCH ON

AUTOMATIC CARRIAGE RETURN
PAPER SCALE.
TYPE, GUIDE : <5 supvmsvmcmasseses@ameisaognsiosoyspemssess
WRITING LINE 5 s 555055 50 5500 5 5 58 w89 6o amoams s s s or o & 1004
PAPER RELEASE0 e
LINE: SPACER. o sswsmesmemesnrmes s mnemsessgssvomns e awyws
PLATEN womiemosi:nioeso i eswsmes @i 5o 8igss 08eiawmirsissyws
CARRIAGE RELEASE (Right and Left).
PLATEN KNOBS (Right and Left)
PLATENVARIABLE
MARGIN RELEASE

SPACE i smaswnsssmsnesvisise s Bisoss@sdsnsa@smsiaininasassy

COLORSHIFT. .. e e
CARBET c5csmeswssvssss 560 imssmis oo snys insiesneqnanss sy
BACKSPAGCE s 05 5005 s ss s w55 e mvme s s o ems o e ooy e v s oo
LOWER CASE, UPPER CASE
TAPE INTERLOCK

TABLE I COMMAND AND ADDRESS EQUIVALENCES
Table Ia Command Equivalences
Table Ib Address Equivalences

TABLE II POWERS OF 2

Table IIla Input/Output Codes for the 121 Typewriter.,..........
Table IIIb Additional Input/Output Codes

)

)
o

¢

1 1
W RN RN DD NN R N e e o

> B> > > > > > > > >

A A A S A S A e e A A A e A
BB D B BB R R DB B DN WWWWWWWWW NN — ———

wwmwmmmmmmmmwwmwmqsmmm 0J 0o oo o U to o b0 b0 OO o0 W0 o0 oo

ILLUSTRATIONS FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE

vi

w

b
Bw =

NoOogswbh—

BRI
QbW —~

[22Ne> e >l Nop)
DDA W~

00 00
w DN =

w >

LGP-21 Computer System................c.ccooeevunon
Track/Sector Numbering System.....................
Memory DiSC ...civimiuniniiiiaeininraesinaroans
Control Registerso

WOrd StrUCLUTE.. « vttt it et e e e e

LGP-21 Coding: Sheet ;s sisssussmsmesmsossssnvnaswsms
Sector Reference Timing Track......................
Instruction Cycle Phase 1
Instruction Cycle Phase 2ooiinen
Instruction Cycle Phase 3vuntn
Instruction Cycle Phase 4
Typical Flow Chart.. .. covuswssmsmanmesaseswnmoemsm

Instruction Word Format............................
List of LGP-21 Commands
Data Word Formatc.cooiiiiiuinininnnnn
Hexadecimal Equivalences
Hexadecimal Designation of Commands

Extended Accumulator

Character Representation on Tape....................
List of Tape Codes ..o vuuvmwscwimiewsmonmemownmsmoa
LGP-21 Special Character Codes..
Basic Bootstrap............. ... i
Decimal Coding for Hexadecimal Fill Sequence
Hexadecimal Fill Sequence

Optimum Timing Requirements
Range of Optimum Sectorsou.0.
Optimum Address Locator

LGP-21 Control Panel .:.:c.ss6:: sovomesnsmasvimsms
Model 121 Tape Typewriterc.oonn...

INTRODUCTION TO THE LGP-21

LN A AN NN AN AR AN AN NN AN AN AR A AN AN AN NN AN N NN AN NN AN NN NN NN NN NN NN NN NN NN NN

GENERAL

COMPUTER ELEMENTS

General Precision's LGP-21 was designed as a compact: mobile computerwith
particular application potential to the problems of the small businessman, en-
gineering firm, or scientific research group. The LGP-21 is not merely econo-
mical to own, but simple to program and operate. These skills can be acquired
by qualified personnel within a two-week training course which is provided at no
charge by General Precision, Inc. This programming manual is provided as an

adjunct to the regular programming class, and should serve as a useful reference
text thereafter.

FIGURE 1 .1 LGP-21 Computer System

When the new LGP-21 programmer has finished his course, he will also be
aware of the fact that a large library of programs and subroutines is available
to assist him in his programming tasks. However, a discussion of the program
library falls beyond the scope of this manual and should be conducted by each
customer with his General Precision salesman/analyst.

A number of computer elements are of particular interest to the programmer
as they provide for the storage and manipulation of information. They are the
memory, arithmetic and control units and will be discussed below with parti-
cular emphasis upon their function in the program-execution process.

Memory The LGP-21 memory unit is a disc with a total information storage capacity of
4096 computer words. For programming purposes, these words are consider-
ed as stored on 64 tracks in main memory, each track being divided into 64
sectors or storage locations. Both tracks and sectors are numbered from 00
through 63. This constitutes a simple means of locating information in memory:
the combination of a word's track and sector number provides the address of the
computer word. For example, the address of a word stored in Track 17,
Sector 05, is "1705"; while the address 0261 refers to Track 02, Sector 61.
There is no break in continuity of addresses from one track to the next, or
from one sector to the next. Thus, consecutive addresses in computer memory
can be said to range from 0000, 0001, 0002.. . .0063, into the next track, 0100,
0101.. . . etc. through 6363. . . .after which the next address would be 0000 again.

Y
=
o
>
o
=
»

00 01 02 03 63

o N
00 og{oo /;'oo 0200 /?goo q i { ' ¢ 0
01 | ooo1 | o101 0201 | | |

02 | 0002 | 032 || l | !
03 0t 3 I l |

I \ 63£3

v \ !
\// N S X -~ \.)

! {
A 63 063 0163 0263 036
4 U \j

FIGURE 1.2 Track/Sector Numbering System

Mounted above the surface of the memory disc are 32 read/write heads which
"read" or "write" information into the various memory locations as the disc
revolves. Each head serves two tracks which are assigned alternate sectors
in a circle. Thus, read/write head 0 reads the first sector of Track 00, then
the first sector of Track 01; then the second sector of Track 00, and the second

sector of 01, etc. Read/write head 1 serves Tracks 02 and 03; head 5 serves
tracks 10 and 11, and so on.

It should be mentioned at this point, that the engineering characteristics of the
memory disc are disregarded for most programming purposes. One exception,
optimizing, represents a programming refinement which may be of limited in-
terest to most LGP-21 programmers. It is therefore ignored for the time
being, and will not be discussed until the end of the manual, in Chapter 8. Other
exceptions will be pointed out as they occur. Suffice it to say that while the

Arithmetic Unit

memory disc actually consists of 32 tracks with 128 sectors each, it will be
treated as a 64 track/64 sector unit for most programming purposes. This
concept makes the LGP-21 fully compatible with other General Precision com-
puters with which the programmer may already be familiar.

I}

Sec

TRACK READ WRITE
HEADS

----- SECTOR 000 FOR
THESE TRACKS

={=- = = —-SECTOR 100

== -—SECTOR 057

NOTE: Zero in front of
1ector number denoles
sector belongs fo even.
numbered track; One in
front, for odd-numberad
tock.

SECTOR REFERENCE TIMING TRACK READ HEAD

FIGURE 1.3 Memory Disc

All internal computations are performed in the arithmetic unit of the LGP-21.
It consists of the Accumulator (A), and the Extended Accumulator (A*), which
are recirculating lines on the memory disc.

The Accumulator (A) is a working register which is used for all manipulation
of data. Through it passes all information which is transferred from one part
of memory to another. Prior to the execution of an arithmetic operation, the
Accumulator holds one of the operands (the other is stored in memory); follow-
ing the execution of the instruction, the Accumulator holds the result of the
arithmetic operation. In addition, all communications between the computer
and its input/output devices pass through this register.

The Accumulator has one read- and one write-head, located one word-time
apart. They continually copy information from one sector into the next, mak-
ing the same word constantly available. On the same track is a two-word
recirculating line, the Extended Accumulator (A*). It is not addressable by
programming, but contains the intermediate results during multiplication and
division operations. The track on which the recirculating lines are recorded
is not one of the 64 tracks of main memory.

Control Unit The control unit directs the operations of the computer. It consists of two re-
gisters: the Instruction Register (I) and the Counter Register (C). Each is a
one-word recirculating line located on the same track as the Accumulator and
the Extended Accumulator.

A’ EXTENDED
ACCUMULATOR
(2 WORDS)

C REGISTER {1 WORD)

TOP VIEW OF RECIRCULATING LINE

A REGISTER (1 WORD! REGISTER (1 WORD }

FIGURE 1.4 Control Registers

The Instruction Register(I) holds whatever instruction is to be executed. The
two exceptions to this rule are the Multiply and divide instructions which de-
pend upon continuous availability of the operand. To provide such continuous
access, the multiplier or divisor -not the instruction — is copied from
memory into the Instruction Register.

The Counter Register (C) contains the address of the next instruction to be exe-
cuted. In other words, if the Counter Register reads 2438, it means that the
next instruction to be executed is in Track 24, Sector 38. This register also
holds the overflow indicator. (Overflow will be discussed in Chapter 6).

With this basic understanding of the various computer elements which are in-
volved in the manipulation of information for the LGP-21, it is now possible to
approach the actual programming procedures for the computer.

THE LGP-21 COMMAND STRUCTURE

R N0 1 0 TR RN AN NN NN AN NN AN NN AN AN NN NN AN N AN NN NN N NN NN NN NS NN N N\ N

INTRODUCTION

INSTRUCTIONS

Generally stated, programming is the process by which problems are put into a
form which a computer can handle. Since the computer can only calculate nu-
merical answers to numerical problems, the programmer has to formulate all

problems in this form and replace non-numerical problems with equivalent
numerical ones.

Calculations on numerically-stated problems involve the use of basic arithmetic
operations; i. e . , addition, subtraction, etc. These operations are initiated by
a set of commands which are easily remembered as they bear a mnemonic re-
lationship to familiar operations, such as "A" signifying Add, "D" Divide, etc.
In all, the LGP-21 responds to 23 basic commands or orders concerning arith-
metic, logical, manipulative, and input/output operations.

It was mentioned before that the LGP-21 memory disc has 4096 sectors in which
information may be stored. The information unit which is stored in a sector is
called a computer word and may consist of data or an instruction (Figure 2.1).

DATA WORD

1 T2]3Ta] 5T 78] oro[11]12[13]14]15]16[17]18]19] 20] 21]22]23]24] 25]26] 27| 28]29[30
-4 DATA L

w

|:=mn> W

INSTRUCTION WORD

o1 T2TaTa]5]e [7]8]9 ol 12[i3f14[r5]16]17]18]19] 20[21]22] 23] 24] 25] 2¢] 27] 28] 25] 30] 31
3 SR : . JCOMMAND|" OPERAND ADDRESS 3
A
C
&

FIGURE 2.1 Word Structure

An LGP-21 word consists of 32 binary digits or "bits'" which are used to repre-
sent decimal numbers or alphabetic symbols as combinations of I's and 0's.
The presence of a bit in a computer word is represented as a 1, the absence of
a value as 0. Since the computer performs all internal information manipulation
in binary form, the programmer must acquire some familiarity with binary
arithmetic. However, this chapter will be concerned only with the decimal re-
presentation of instruction words, and with a basic understanding of their func-
tions. The binary number system will be discussed in Chapter 4.

The programmer uses an instruction to tell the computer what operation it must
perform. Each instruction is composed of two significant parts which identify
the instruction as such to the computer: the command part which specifies the

type of operation (add, multiply, etc.), and the address of the operand in track-
and-sector notation.

21

Arithmetic Instructions

A ADD

Each command is assigned one of sixteen alphabetic characters. A few of
these characters are used to represent two different functions. As a means of
distinguishing between these alternate functions, the character is preceded by

a minus sign for one operation, and by no sign for the other. When such an in-
struction is entered into the computer, however, it is recorded as follows: a
minus instruction is recorded with a 1 in bit position zero; a non-minus instruc-
tion is recorded with a 0 in bit position zero of the word.

The two significant parts of an instruction word are recorded in the following
positions: the command in bit positions 12 through 15, the operand address in
bit positions 18 through 29. The operand address, furthermore, consists of a
track address (bits 18 through 23), and the sector address (bits 24 through 29).
For instructions whose command portion calls for a transfer of data, the oper-
and address specifies the memory location from which the data is brought to the
Accumulator, or in which the data is stored from the Accumulator. For arith-
metic operations this address specifies the memory location of the second
operand (the first operand must be in the Accumulator).

A typical instruction would be A 1532; that is, the instruction to the computer
to ADD the contents of Location 1532 to whatever is in the Accumulator at the
time the instruction is issued. This would be stored as follows: a 0 bit in the
zero position of the computer word, to indicate that this is not a negative in-
struction; the binary equivalent of "A'" (add) in bit positions 12 through 15; and
the binary equivalent of the address 1532 in positions 18 through 29 of the in-
struction word. The unfilled bit positions 1 through 11, 16 and 1'7, and 30 and
31 are ignored by the computer when it executes an instruction. Actually, bit
position 31 is always recorded in memory as a "0" as it serves to separate
computer words. It is called the "spacer bit".

The four groups of instructions — arithmetic, logical, manipulative, and input/
output — are summarized below in the following manner: the first column, head-
ed “Order, " gives the alphabetic designation of the command; the "Address"
column contains an "m'" or '"n", where "m' represents any one of the 4096
memory locations and ''n'" represents a value rather than an address. The
"Interpretation" column explains the function of each instruction.

Order Address Interpretation

A m ADD--Add the contents of location m to the contents of the
Accumulator. The sum replaces the contents of the
Accumulator. If an addition results in a number beyond
the limits of the Accumulator, overflow will occur. The
contents of m remains unaltered.

INITIAL CONTENTS FINAL CONTENTS
MEMORY MEMORY
A e e
ACCUMULATOR ACCUMULATOR
B A+B

Order Address Interpretation

D DIVIDE D m DIVIDE--Divide the number in the Accumulator by the num-
ber in location m, retaining the quotient, rounded to 30 bits,
in the Accumulator. The absolute value of the contents of
m must be greater than the absolute value of the contents of
the Accumulator, or overflow will occur. During the divide

operation the Instruction Register holds the divisor. m
remains unaltered.
INITIAL CONTENTS INTERMEDIATE CONTENTS FINAL CONTENTS
MEMORY MEMORY MEMORY
A — S A A
{
ACCUMULATOR ACCUMULATOR ACCUMULATOR
B B B+A

INSTRUCTION INSTRUCTION

Y

A 3 A

Order Address Interpretation

M MULTIPLY M m MULTIPLY--Multiply the contents of the Accumulator by
the contents of location m, forming a 62-bit product of
which 31 bits are retained: the sign and the most significant
30 bits of the product replace the contents of the Accumula-
tor. The Instruction Register holds the multiplicand during
the multiply operation. Memory remains unaltered.

INITIAL CONTENTS INTERMEDIATE CONTENTS FINAL CONTENTS
MEMORY MEMORY MEMORY
ACCUMULATOR ACCUMULATOR ACCUMULATOR
B B Ax B
([Most Significant 31 Bits)

INSTRUCTION INSTRUCTION INSTRUCTION

A e A

2-3

Order Address Interpretation

N MULTIPLY N m MULTIPLY--Multiply the contents of the Accumulator by
the contents of location m, forming a 62-bit product of
which 31 bits are retained: the least significant 31 bits re-
place the contents of the Accumulator, occupying bit posi-
tions 0 through 30. Loss of any of the most significant
bits does not cause overflow. During the multiply opera-
tion, the Instruction Register holds the multiplicand.
Memory remains unaltered.

INITIAL CONTENTS INTERMEDIATE CONTENTS FINAL CONTENTS
MEMORY MEMORY MEMORY
A G
ACCUMULATOR ACCUMULATOR ’ ACCUMULATOR
A x B
. -l B {Least Significant 32 Bits)
INSTRUCTION INSTRUCTION INSTRUCTION
B> A -

Order Address Interpretation

S SUBTRACT S m SUBTRACT--Subtract the contents of location m from the
contents of the Accumulator and retain the difference in
the Accumulator. If a subtraction results in a number be-
yond the limits of the Accumulator, overflow will occur.
Memory remains unaltered.

INITIAL CONTENTS FINAL CONTENTS
MEMORY MEMORY
A
ACCUMULATOR ACCUMULATOR
B B-A

2-4

Logical Instructions

Order Address Interpretation

E EXTRACT E m EXTRACT--Where "1'" bits are in location m, retain the
value of the corresponding bit positions in the Accumulator;
where "0" bits are in m, place 0 bits in the corresponding
positions in the Accumulator. The word in location m is
called the ''mask" and remains unaltered.

INITIAL CONTENTS FINAL CONTENTS
MEMORY MEMORY
111100001111 0€¢——»—— 1111000011110 +—»
I
ACCUMULATOR ACCUMULATOR
1001111010110 > 1 1001000010110 4——»

Order Address Interpretation

T CONDITIONAL T m CONDITIONAL TRANSFER--If the contents of the Accumu-
TRANSFER lator is negative (1 in the sign position), replace the con-
tents of the address portion of the Counter Register with m
and get the next instruction from location m. If the contents
of the Accumulator is positive, continue to the next instruc-
tion in sequence without altering the Counter.

INITIAL FINAL INITIAL FINAL
CONTENTS CONTENTS CONTENTS CONTENTS

ACCUMULATOR ACCUMULATOR ACCUMULATQR ACCUMULATOR

+ A

INSTRUCTION INSTRUCTION INSTRUCTION

COUNTER i COUNTER l CO+U]NTER *

2-5

TRANSFER CONTROL-If the contents of the Accumulator
is negative, or if the TC switch on the console is ON, re-

place the contents of the address portion of the Counter Re-
gister with m and get the next instruction from location m.

FINAL CONTENTS

ACCUMULATOR

INSTRUCTION

INTERROGATE SIGN OF
ACCUMULATOR VALUE

IS VALUE IN ACCU-
MULATOR NEGATIVE- ?

NO
INTERROGATE ' TC SWITCH

mmss

IS TC SWITCH ON?

ttss +1
COUNTER

UNCONDITIONAL TRANSFER--Replace the contents of the

Order Address Interpretation
-T TRANSFER -T m
CONTROL
INITIAL CONTENTS
ACCUMULATOR
+ A
INSTRUCTION
COUNTER
Order Address Interpretation
U UNCONDITIONAL v m
TRANSFER

INITIAL CONTENTS

INSTRUCTION

COUNTER

2-6

address portion of the Counter Register with m and get the
next instruction from location m.

FINAL CONTENTS

INSTRUCTION

COUNTER ~———Aeee

-

Order Address Interpretation

STOP z z n STOP--When n = 0000 or 0100, halt computation.
INITIAL CONTENTS FINAL CONTENTS

ACCUMULATOR ACCUMULATOR

A

INSTRUCTION INSTRUCTION
T 00ss '-

Olse.

, COMPUTER
STOPPED

+1

COUNTER COUNTER |

ttss

ttss +1

When n = 0200 or 0300, no operation occurs; i.e., the com-
puter does not halt, the contents of the Accumulator remains
unchanged, and nothing in memory is altered.

INITIAL CONTENTS FINAL CONTENTS
ACCUMULATOR

ACCUMULATOR

INSTRUCTION INSTRUCTION
: { 02ss | : 02ss
Zh 032 | 21| os%

+1
COUNTER COUNTER ¥

l__ : l ttss ' S ttss +1

Order Address Interpretation

z SENSE BS AND VA n SENSE BS AND TRANSFER--Interrogate theBranch Switches
TRANSFER specified by the track portion of n (3<n<63). If all of the
specified Branch Switches are ON, the next sequential in-
struction will be executed. If any of them is OFF, the next
instruction will be skipped. The Branch Switches are num-
bered 4, 8, 16 and 32.

INITIAL CONTENTS INTERROGATE BS FINAL CONTENTS
SWITCHES
INSTRUCTION INSTRUCTION

ARE ALL nnB.S. TVYES. g
SWITCHES ON? /J

LNO ttss+2
COUNTER COUNTER ¥
ttss +
ttss+
Order Address Interpretation
-z SENSE -Z n SENSE OVERFLOW AND TRANSFER--If overflow is OFF

OVERFLOW (0 in the sign position of the Counter Register), skip the
AND next instruction in sequence. If overflow is ON (1 in the
TRANSFER sign position of the Counter), reset the overflow bit to zero;

then execute the next instruction. The track portion of n
designates which, if any, Branch Switches are also to be
interrogated.

INITIAL CONTENTS INTERROGATE FINAL CONTENTS
TRUCTION _ OVERFLOW INSTRUCTION

——C IS OVERFLOW ON?}YES tss+]

[no

ttss+2

COUNTER COUNTER

Zero |

2-8

If Sense Overflow is combined with Stop (-ZOOOO), the skip
or no skip is deferred until after the stop. If no Branch
Switches are to be tested and no stop is desired, the track
address can be 02 or 03.

INITIAL CONTENTS INTERROGATE FINAL CONTENTS

INSTRUCTION OVERFLOW INSTRUCTION

™\ YES
-—-(IS OVERFLOW ON?) ttss+1 COMPUTER

? STOPPED
INO ttss+2

COUNTER. COUNTER |

ZERO |

Overflow and/or any combination of Branch Switches can be
interrogated with one Sense and Transfer instruction.

INITIAL CONTENTS INTERROGATE BS FINAL CONTENTS
INSTRUCTION SWITCHES AND OVERFLOW INSTRUCTION

ttss + 1

(ARE ALL nn B S SWITCHES\ YES

AND OVERFIOW ON?/
NO ttss+2
COUNTER COUNTER |
Zero
Manipulative Instructions
Order Address Interpretation
B BRING B m BRING--Bring the contents of location m into the Accumu-
lator, replacing its contents. Memory remains unchanged.
INITIAL CONTENTS FINAL CONTENTS
MEMORY MEMORY
ACCUMULATOR ACCUMULATOR
: -8 : : B A

2-9

CLEAR
HOLD
6-Bit SHIFT
-l 4-Bit SHIFT
2-10

Order Address Interpretation

CLEAR--Store the contents of the Accumulator into memory

C m
location m; then clear the Accumulator to zero.

INITIAL CONTENTS FINAL CONTENTS

MEMORY MEMORY
ACCUMULATOR ACCUMULATOR
B 4— 000 ——mP»

Order Address Interpretation

H m HOLD--Store the contents of the Accumulator into location
m, without altering the contents of the Accumulator.

INITIAL CONTENTS FINAL CONTENTS

MEMORY MEMORY
A —> B
ACCUMULATOR ACCUMULATOR

B

Order Address Interpretation

6-BIT SHIFT--When n-6200, shift the contents of the Ac-
cumulator left 6 places, inserting zeros at the right.

I n

ACCUMULATOR
Bits Lost | l '
- |+ -y

L
=

Order Address Interpretation

4-BIT SHIFT--When n=6200, shift the contents of the Ac-
cumulator left 4 places, inserting zeros at the right.

-1 n

ACCUMULATOR
Bits Lost '
+— | = 4+—0s

=

Order Address Interpretation

SET RETURN R m SET RETURN ADDRESS--In the address portion of location

ADDRESS m, record the address which is 2 greater than the location
of the I instruction being executed (i. e. ., the contents of the
Counter Register plus 1).

INITIAL CONTENTS FINAL CONTENTS
MEMORY MEMORY
A B e LA ttsse 1 [e
+1 ‘
COUNTER COUNTER

ttss e] ttssel]

Order Address Interpretation

STORE ADDRESS Y m STORE ADDRESS--Replace the address portion of the word
in location m with the address portion of the word in the Ac-
cumulator, leaving the rest of m and all of the Accumulator

. undisturbed.
INITIAL CONTENTS FINAL CONTENTS
MEMORY MEMORY
wa by ke : E
ACCUMULATOR ACCUMULATOR
D 3 E P , 2 F
Input/Output Instructions
Order Address Interpretation
| 6-BIT INPUT I n 6-BIT INPUT--Shift the contents of the Accumulator left 6

places, inserting zeros at the right. Then give a start read
signal, allowing 6 bits of each character read by the input de-
vice specified by n to enter the Accumulator. A character
enters the low-order (right) end of the Accumulator, shifting
the previous contents of the register toward the high-order
end. Once input is initiated, characters will be shifted into
the Accumulator (and out the left end if too many are entered)
until input is terminated.

ACCUMULATOR

Bits Lost
'l; T <—— 5|x 0's <€— INPUT

2-11

Order Address Interpretation
-l 4-Bit INPUT 1 n 4-BIT INPUT--Shift the contents of the Accumulator left 4
places, inserting zeros at the right. Then give a start read
signal, allowing the 4 bits of each character read by the in-
put device specified by n to enter the Accumulator. A
character enters the low-order (right) end of the Accumula-
tor, shifting the previous contents of the register toward the
high-order end. Once input is initiated, characters will be
shifted into the Accumulator (and out the left end if too many
are entered) until input is terminated.
» ACCUMULATOR
B‘(" tos!_ 1| <«——FOUR 0's “€— INPUT
Order Address Interpretation
P 6-Bit PRINT P n 6-BIT PRINT--Transmit the character represented by bits
0 through 5 of the Accumulator to the output device speci-
fied by n. The contents of the Accumulator remains un-
altered.
T
ACCUMULATOR
“1" 10
- o1if1d1= -
OUTPUT DEVICE
012345 31
Order Address Interpretation
-P 4-Bit PRINT -P n 4-BIT PRINT--Combine "1'" for channel 5 and "0" for channel
6 with bits 0 through 3 from the Accumulator, then transfer
this character to the output device specified by n. The con-
tents of the Accumulator remains unaltered.
G
ACCUMULATOR
_ “"G" 10 =
< of1{1] < >
OUTPUT DEVICE
0123 3

2-12

LGP-21 CODING SHEET

CONSTRUCTION OF AN LGP-2 7 PROGRAM

AN NI AN RN AR AN NN AN AN AN N NN AN AN NN NN NN N AN N AN NS NN NN NN NN NN N

A computer program consists of a series of step-by-step instructions from the

programmer to the computer. To illustrate the basic concept, the following

steps would have to be specified to solve the problem below:

EZ‘;—STQ -6 = X.

As explained in Chapter 2, "A" is the alphabetic symbol for addition, "M" for
multiplication, "D" for division, and "'S" for subtraction. According to the de-

finition, each instruction must consist of a command portion which identifies
the operation to be performed and an address.

Therefore, assuming that the

numbers 7, 8, 3, 9, and 6 are stored in memory in locations 0300, 0301, 0302,
0303, and 0304 respectively, the program would look like this:

Step

1

Order Address Notes
B 0300 Bring the number 7 to the Accumulator.
A 0301 Add 8 7+8 =15
7+8
D 0302 Divide by 3 —3—=5
7+8
M 0303 Multiply by 9 (3)
S 0304 Subtract 6 ((L ;8)9 -6 s
H 0305 Hold the answer in 0305
Z 0000 stop

It is important to clearly understand the distinction between the address of a
memory location and the contents of that location. An address, such as 0300,
refers to a place on the disc, while contents refers to the word recorded at

that place.

Programs are usually written on LGP-21 Coding Sheets.

The sample below

(Figure 3.1) shows the general format and explains in detail the purpose of the
seven columns provided.

3-1

LGP-21 CODING SHEET

PREPARED FOR PAGE or
308 NO PROGRAN NO PROGRAM PREPAREU BY l-mnu cuickioBY ‘DATE -
PROBLEM TRACK
PROGRAM INPUT CODES g LOCATION wu"ms:nlu{:non 5 oF ADDAISS Notts
1
Ly L
' 0
A L
U 1
ey e L NN S W
T ¥
NI S | . , =
Input codes are For the programmer's
interpreted and convenience
acted upon by the
program input

routine For the programmer’s convenience.

May be used to identify the value
stored at the address used in each
The conditional stop instruction.

code must follow
each program input
code

Stop Code must follow each
instruction whether that
location is to be left blank
or filled.

Memory location into

which the instruction

in the adjacent column
is to be stored.

The two parts of this column contain the operation
(command) and the address. Each may contain up
to 4 characters. The operation section holds an
alphabetic character representing an order or the
high-order portion of a hexadecimal word. The

address section holds the operand address for the
given operation or the low-order portion of a hexa-
decimal word.

FIGURE 3.1 LGP-21 Coding Sheet

The last column, "Notes', should be used to provide all the necessary explana-
tory information which will be helpful for subsequent reading of a program. The

programmer will find it very useful to develop the habit of providing such infor-
mation.

Anything written in parenthesis on the coding sheet should be read as "the con-
tents of'"; an arrow as '‘replace'; and the abbreviation "Acc. ' will be used for
“Accumulator. " For example, (m) is to be read '"the contents of memory loca-
tion m, ' and (m)— (Acc.) is to be read '"the contents of memory location m
replaces the contents of the Accumulator. "' This notation will be used through-
out the manual.

If the example problem were written on a coding sheet, with the instructions to
be stored in locations 1000 through 1006, it would appear as follows:

PROGRAM 4] INSTRUCTION S| conrtents
INPUT CODES 55| LOCATION [ShepaTiON] ADDRESS | % | OF ADDRESS NOTES
T
1 1 L 1 1 1 i ’
1
14
1 1 1 : 1 i 1 1 1 1 1 L { 1 1 1
TR T T T 1,00,0 L 13{0131010 ’ 7 (0300) — (Acc.) = 7
}
be 1y 1,00 1|, , ,A030,1]" 8 7 + (0301) = (Acc)= 15
T T
I P e T S 1,00,2] , , 101013|0‘2 r 3 15 + (0302)—>(Acc.)= 6
L} T
T BT 1,00,3/ , , M0,3,03]" 9 5 x (0303)——(Acc.)=45
} t
R S 1,0,0,4/ , , ,5,0,3,0,4]" 6 45 - (0304)——(Acc)=39
TSR S SR W N T | Ilololsl PR |H;0|3{0_t_5_’ (Acc) ——(0305)
NI T 1,0,0,6} ; ,2,0,0,0,0° STOP
1 N

THE 4-PHASE
INSTRUCTION
CYCLE

SECTOR REFERENCE
TIMING TRACK

At the start of an operation, the computer memory must contain the data to be
processed, and the instructions which tell the computer what operations to per-
form on these data. Ignoring, for the moment, how this information is initially
entered into the computer, it need merely be remembered here that any memory
location may be used to store one instruction word or one data word. To start
execution of the instructions, the programmer specifies the storage location of
the first instruction to be executed. After it is found and operated on, the com-
puter automatically takes all successive instructions from sequential memory
locations (e.g. , if execution starts at Location 1400, the next instruction will
be taken from 1401, then 1402, etc.). The time required for completing a
specified operation depends, in part, on the location in memory of the instruc-
tion and of its operand, if one is necessary. The process by which the com-
puter obtains and executes an instruction is called an instruction cycle. An in-
struction cycle begins with a memory search for the instruction word and ends
with the commencement of the search for the next instruction word.

The complete cycle consists of four phases:
Phase 1 - Search for the instruction.

Phase 2 - Transfer the instruction from main memory to the Instruction
Register and increment the Counter Register by 1.

Phase 3 - Search for the operand.

Phase 4 - Execute the instruction.

In order for the computer to find a specific location in memory, a Sector Re-
ference Timing Track is used. This track contains the sector numbers 00
through 127 permanently pre-recorded at the time of manufacture. As ex-
plained in Chapter 1, there are actually 32 concentric circles on the disc
which are divided into 128 sectors each. However, for programming purposes,
sector addresses are numbered 00 through 63. Therefore, on the Sector Re-
ference Timing Track numbers greater than 63 are interpreted modulo 64. For
example, sector 97 on the Sector Reference Timing Track represents sector 33
for odd-numbered tracks (i.e. 97 ~ 64 = 33).

Sector Reference
Timing Track
read head

Track 14 read/write
head

FIGURE 3.2 Sector Reference Timing Track

3-3

3-4

The Sector Reference Timing Track (Figure 3.2) has only a read-head and can-
not be modified by the programmer. The numbers on this track pass under its
read-head one sector before the corresponding sector in main memory does.
Thus, when a specified sector address is read on the Sector Reference Timing
Track, the read/write head on the appropriate track is activated, and the word
can be read from or recorded in memory. For example, assume the contents

of Location 1432 is to be brought to the Accumulator. Because Track 14 is even-
numbered, the Sector Reference Timing Track searches for sector 32. When it
is read, read-head 7, which serves Tracks 14 and 15, is activated; and as sec-
tor 32 moves under that read-head, its contents is copied into the Accumulator.

This sequence of actions may be more easily understood if two instructions are
considered in terms of the instruction cycle. For example:

PROGRAM 3] INSTRUCTION G| contents
INPUT CODES | 'u_?l LOCATION 5peRaTION] ADDRESS ;| OF ADDRESS NOTES
y ’
1 1 1 1 1 1 1
T
4
1 1 1 _Ir 1 1 1 1 1 1 1 1 1]] 1
Ly llll|,5 | lJﬂlq,lq,_5‘8 . 8 8 (Acc.)
11) 1 L1 |Illll6 Ll IA=4|4'|51;2 ! 7 8+7(ACC~)

During Phase 1 the Counter Register contains the address 1115. Since 11 is
an odd-numbered track, the computer searches the Sector Reference Timing
Track for sector 79 (79 - 64 = 15). When it is read, the read-head 5, serving
Tracks 10 and 11, is activated, and Phase 1 ends (Figure 3.3).

Sector Reference
Timing Track
read head

¢ [Eiisniei s

Track 11 read/write
head

FIGURE 3.3 Instruction Cycle Phase 1

In Phase 2 the contents of Location 1115 is copied into the Instruction Register,
and the Counter Register is incremented by 1, so that it now contains 1116
(Figure 3.4).

Sector Reference
Timing Track

, ' read head
<l S s
O 5 4450 G I~ Track 11 read/write
head
A

FIGURE 3.4 Instruction Cycle Phase 2

During Phase 3 the computer searches the Sector Reference Timing Track for
the operand sector specified in the Instruction Register- that is, sector 58
(Figure 3.5).

sector Reference
Timing Track

read head

c me

| [s] 4458 Track 44 read/write
head

A

FIGURE 3.5 Instruction Cycle Phase 3

3-5

TRANSFER
INSTRUCTIONS

3-6

When sector 58 is read, Phase 3 ends, and the computer goes to Phase 4
(Figure 3.6) to execute the instruction B4458. Therefore, the contents
of Location 4458 (the number 8) is copied into the Accumulator.

Sector Reference
Timing Track

cll- 116 read head
1 B 4458 |
— Track 44 read/write
head
A 8 -

FIGURE 3.6 Instruction Cycle Phase 4

Then the cycle begins again:

Phase Activity

1 Counter Register contains 1116, therefore search for sector 80
on the Sector Reference Timing Track. When sector 80 is found,
activate read-head 5 for Track 11.

2 Copy contents of Location 1116 (A4452) into the Instruction Re-
gister. Increment the Counter Register by 1 to 1117.

3 Search for sector 52. When it is read, activate read-head 22
for Track 44.

4 Execute the instruction; that is, add the contents of 4452 (the
number 7) to the contents of the Accumulator (8) and leave the
result (15) in the Accumulator.

The minimum time required for a complete 4-phase cycle is 18 word-times.
A "word-time" is the time required for one word to pass under the read/
write head. Since the disc revolves at approximately 1180 rpm, a word-time
takes approximately .40 millisecond for the LGP-21. The maximum time for
the 4-phase cycle is 146 word-times (one disc revolution plus 18 word-times).
Program execution time can be minimized by selecting operand addresses
according to a special method which is called “optimizing. ' This process is
explained in Chapter 8. However, optimization is not considered in most of
the examples given in this manual.

When the computer has to take the next instruction from some location other
than the next one in sequence-that is, execute a branch-two types of in-
structions may be used: an unconditional or a conditional transfer instruction.

The Unconditional Transfer instruction, Urn, tells the computer to branch un-
conditionally to location m to obtain the next instruction, instead of going to the
next location in sequence. After this transfer, the sequential mode is resumed,
starting at location m, until another transfer instruction is encountered. If the
U instruction is regarded in terms of the 4-phase cycle, it can be explained

as follows:

Instruction Explanation

§] m—s= (Counter)

Instructions are executed in Phase 4. If m replaces the contents of the Count-
er in Phase 4, the computer will go to m during Phase 1 of the next 4-phase
cycle to obtain the next instruction. The contents of the Counter is replaced
by the address portion of the U instruction which is in the Instruction Register

during Phase 4. (Note: It is not the contents of m which replaces the contents
of the Counter.)

The Conditional Transfer instruction, Tm, tells the computer to branch to
location m to obtain the next instruction only if the Accumulator contains a
negative word; otherwise, to go to the next location in sequence for the next
instruction. If the transfer takes place, the sequential mode is resumed,
starting at m, until another transfer instruction is encountered. If the T
instruction is thought of in terms of the 4-phase cycle, the instruction can be
explained as follows:

Instruction Explanation
T If the Accumulator contains a negative word,

m —(Counter); if the Accumulator contains
a positive word (Counter) remains unchanged.
In either case (Acc.) remains unchanged.

Phase 3 for U and T instructions is a dummy phase, as a memory search
for an operand is unnecessary in conjunction with these two instructions.

Consider a problem using these transfer instructions. The problem requires
one of two calculations to be made-the choice depending upon the sign of a

certain number. B, C, D, and E are given, and the problem is stated as
follows:

If B is positive, calculate [%:ID answer

If B is negative, calculate BE—E D = answer

Data Storage

Location Data
0300 B
0301 c
0302 D
0304 E
0400 Answer

The coding for this problem follows:

INSTRUCTION
MODIFICATION
AND LOOPING

3-8

PROGRAM o] INSTRUCTION __ | 5| CONTENTS
INPUT CODES 55| LOCATION[GPERATION] ADDRESS | &5| OF ADDRESS NOTES
T
' 1 I i 1 1 1 .
T
L4
1 i 1 { 1 1 1 1 1 1 1 1 = 1 1 1
T 1 11 l101410 L1 n&kol |Olo ’ B—b—(ACC.)
P S R 1,004, 0] | | lT= 1,0,4,6|" Test B for [positive or negative
sy 1,0,4.2| | | .Dﬁ.O,B,O,I ’ (Acc.) + C»i(Acc)
TR ST T 1,0,4,3] , | .M=O.3,0,2 : (Acc) x {Acc.)
Lo i 4 1y 1,0,4,4 , , ,H,0,4,0,0] (Ace.) = 4400
¥ e O + TE e ||01415 11 IZ=OJOIOIO ! HALT
Lo 1,0,4,6| , , ;A,0,3,0 4|’ (Acc) + E-+(Acc)
+ t
P S 1,0,4, 7 , , U, 1,0,4,2]" Branch back to complete calculations
+
1 I 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 .
+ et

The T1046 instruction in Location 104ldirects the computer to 1042 for the
next instruction if B is a positive number. If B is a negative number, the
computer branches to Location 1046 to obtain the next instruction. Starting
at 1047 it is necessary to execute the same instructions which are in Locations
1042 through 1045; to avoid repeating these instructions, a U1042 instruction
in Location 1047 is used to transfer back to them.

As already explained, the instruction to be executed is transferred to the In-
struction Register during Phase 2 and executed during Phase 4. It should be
noted that the computer can only interpret a word as an instruction word when
it is in the Instruction Register. An instruction word in any other place is in-
terpreted as a data word. This makes it possible to manipulate instruction
words as if they were data words. For example, using the appropriate se-
quence of instructions, one can bring an instruction word into the Accumulator,
modify it in some way (possibly by adding some constant to it), and hold the
modified instruction back in its original location. The computer is unaware
that it is actually processing an instruction word. The modified instruction
word will not be interpreted as an instruction until it is transferred to the In-
struction Register during Phase 2 of some subsequent 4-phase cycle; and this
will not occur until the address of this instruction is in the Counter Register
during Phase 1 of the subsequent 4-phase cycle. This LGP-21 feature—
internally stored program operation which permits modification of instructions—
can be a very useful programming aid.

Consider this problem:

128 numbers are stored in Locations 0300 through 0463 (Tracks 03 and 04).
Compute their sum and store the result in Location 0500.

This problem could be solved by bringing the first of above numbers into the
Accumulator with a Bring instruction, then adding the other 127 numbers by
using 127 Add instructions, and finally storing the result as specified. This
would be a tedious way to code the problem, though it would be a possible
approach. However, the program can be reduced to a few instructions by using
the instruction modification feature. The coding would be as follows:

o

lN;TJ?%%DAES Igl LOCATION opfakﬁf;z‘fcuggkess ; o‘?°§J§§‘s’§s NOTES
1 1 1 1 1 N 1 1 1 1 1 1 i 1 1 1
o 0,008| ,, €05,0,0]" 0— (Acc.)
e 0,009] , , ,¢,05,00]|’ Sum | 0—(Acc.)
i , L 0,0,1 0] , | lB:0,5,O,O . Bring sum to Acc.
oy, |00, A03,00[Add_the next number
o 1doou,2l,, HO5,00]" Hold »F;um in 0500.
! ' 11

The first instruction will be stored in Location 0008. This is possible since
the computer will start execution of the program at any location specified by
the programmer.

The first CO500 instruction places whatever is in the Accumulator into 0500
and creates a zero in the Accumulator. The second CO500 instruction (which
could just as well be H0500) sets the sum in 0500 to zero. The next 3 instruc-
tions bring the sum (zero at this time), add to it the first number (which is in
0300), then hold this answer back in 0500 as the new sum. The next sequence
of instructions must effect (1) the address modification of the AO0300 instruc-
tion in Location 0011, (2) a branch back to Location 0010 to repeat the se-
quence, and (3) a means of terminating the repetition. This process is called
“looping”. Thus, the instruction in Location 0011 can be changed to A0301 for
the next time it is executed; then changed to A0302, etc. There must be con-
trol over the number of times that the instruction is modified and the loop re-
peated; then an exit from the loop can be made after the 128 numbers have
been summed.

Continuing with the coding, the instructions in Locations 0013 through 0015
accomplish the modification of the A0300 instruction in Location 0011:

PROGRAM & INSTRUCTION S| conTenTs
INPUT CODES B | LOCATION [orra TiON] ADDRESS |5 | OF ADBRESS NOTES
: 2 2]
1 1 1 1 1 1 1 ’
T
’
1 L 1 : 1 1 1 1 1 1 1 1 : 1 1 1
P 0,008} ,, €0,5,0,0 ’ Zero—(Acc|
e 1 g G 0,0,0,9| , , ,c,0,50,0{" Store zero i 0500 [m:sum]
T T
NP 0,0,1,0{ , , lB}015,0,0 i Bring the sum 1o fhe Acc.
NI T 0,0,1,1 ,, ,A,0,3,00]|" Add the next number
TR 0,0,1,2| , , /HO/50,0]" Hold the sum in 0500
L}
L 0,0,1,3] ; 4 B,0,0,01;1])]"* Bring the ins}ruction fo be modified to
L
1) 3 : 1 1 1 1 1 1 1 1 1 { 1 1 1 ’ 'he Acc'
PR SR 00,1,41 (A=°1°;[.9 ’ Add Z 0OOl|io the instruction
N 0,0, 1,5, , H 00,11} ¢ Hold modifieq instruction 0Ol
J S T N T S S [E Rt U R G N S U | a
T . T
1 1 1 : 1 1 1 1 1° 3 1 1 1 + 1 4 1 ‘
R 0,0,1,9] , 4 ,2 : 0,00, 11" Constant usedl in address modification
1 I' 1 ‘L 1 1 1 1 1 1 1 1 l% -1 1 ¢

The BOOI11 instruction in Location 0013 brings into the Accumulator, from
Location 0011, the instruction to be modified. Now arithmetic operations can
be performed on this instruction word as if it were a data word. In the Ac-
cumulator is the instruction word A0300, to which another word must be
added, so that the instruction word A0301 will be obtained as the result. The
A0019 instruction in Location 0014 accomplishes this by adding the contentsof
Location 0019 to the contents of the Accumulator and leaving the sum in the
Accumulator. This addition takes place:

3-9

A 0300 - Initial contents of Accumulator
+ Z 0001 - Plus contents of Location 0019

A 0301 - Final contents of Accumulator

(A "Z" in the command portion of an instruction is treated as a zero by the
computer.)

Thus, when the computer is ready to execute the instruction in Location 0015,
the Accumulator contains the instruction word A0301. The HOOI1 instruction
in 0015 places the contents of the Accumulator in Location 0011. Therefore,
the A0300 instruction in Location 0011 has been replaced by the instruction
A0301.

When the sum of the 128 numbers has been accumulated in Location 0500, the
program must exit from the loop. The instructions in Locations 0016 and 0017
enable the program to determine whether the loop is to be repeated or termi-
nated:

a
INPUT CODES g LOCATION {5t iON] ADBRESE | 5 OF CADBRESS NOTES
L]
N N N N X L N .
I ’

1 1 1 : T S 11 11 I X } 1 1 1
N 0,0,0,8] , | .C{O.SIM ‘ Zero the A
Ly 0,0,0,9]| , , ,clo,ﬁ,o,o . Store zero i 0500 (the sum)
R 0,0,1,0| , , ,B=0,5,0,0 4 Bring the su to the Acc.
PRI N WO 00,0, 1] 4 ll\=|:0 3,0 0" Add the nex number
Loy 0,0,1,21 , | lH§O,5,0,0 ¢ Hold the sum in 0500
I 0,0,,3} , , .8 =0 o Bring the insjruction to_be moditied to
L g Lo 4 the Acc.
Lo 0,0,1,4f , , ,A0,0,1,9 i Add _Z 00Of to the instruction
NI S I 0,0,1,5) , , yH0,000,1]" Hold moditied instruction in 0003
11 : Lot 0,0,1,6{ , , ;S ;0 ,0,2,0|" Subtract A Q500 from the instruction
PRI ; Lo 0,0 1,7 , | .T;0.0,I 0l’ Return to bo‘iminq of loop if (Acc) |
N S R L1 L ’ negative

Lop 0,0,1,8} , | ,210.0.0,0 i HALT
MR 0,0, 1,9} , | lZIO,OJQLI ’ Constant use in oddress modificalion
I S MR 0,0,2,0] , , ,A=0 ,5,00(’ Constant use to test for end of loop
P T T S T L P T T B -
i =L T
Aol 1 ‘l A L 4 J 1 1 1 1 1 ! 1 1 1

Before the SO020 instruction in 0016 is executed, the Accumulator contains the
A instruction which has just been held in 0011 by the instruction in 0015. What
is the address portion of the A instruction now in the Accumulator? It depends
on how many times the loop, extending from 0010 through 0017, has been exe-
cuted. If it has been executed once, the A instruction reads A 0301; if twice,
A 0302 and so on. If the loop has been executed 128 times, the instruction
reads A0500. The following example shows that the subtraction will yield a
negative result whenever the A instruction has an address portion less than
0500:

A XXXX
-A 0500

Result: Some negative number for any XXXX <0500

* It is good practice to enclose an address with brackets to indicate that it
will be modified during the execution of the program. The brackets have
no other significance, but make it easier for a programmer to follow the
program.

THE Y INSTRUCTION

The A instruction is in the Accumulator and in Location 0011 before the
S0020 instruction is executed. Whenever this A instruction has an address
portion less than 0500, the result of the SO020 instruction in 0016 will be a
negative word in the Accumulator. The TOOI10 instruction in 0017 will then
branch to the beginning of the loop at Location 0010. At the start of the

128th execution of the loop, the A instruction in 0010 will be A0463. There-
fore, the instructions from 0010 through 0012 will add in the last number and
hold the sum in 0500. The instructions from 0013 through 0015 will modify
the instruction in 0011 to read A0500 and leave this instruction in the Accumu-
lator. The 50020 instruction in 0016 will subtract A0500 from this instruction
word. For the first time the result will be positive (zero). Therefore,

rather than branching back to the beginning of the loop, the TOO10 instruction
will allow the computer to exit to the instruction in location 0018, a halt. At
this time 0500 will contain the sum of the 128 numbers stored in 0300 through
0463.

A question on elementary arithmetic might have occurred to the reader. If
the above program is to work correctly, the following answer must result
from the modification of the instruction in 0011:

A 0363 - Initial contents of Accumulator
+Z 0001 - Plus contents of Location 0013

A 0400 - Final contents of Accumulator

If the addition were done according to the rules of decimal arithmetic, the
answer would be A 0364. However, there is no address 0364, and the com-
puter gives A 0400 as the answer. This is due to the following rule: when
the sector portion exceeds 63, as in 0364, subtract 64 from the sector andadd
01 to the track to arrive at the "right" answer.

The Y instruction stores the address portion of the contents of the Accumula-
tor in location m, replacing the address portion of the word in location m.
The remaining bit positions of location m are unchanged.

Instruction Explanation
Y Address portion of (Acc.)-address portion

of (m); (Acc.) and all but the address portion
of (m) remain unchanged.

This allows storage of the address portion of the word in the Accumulator in
memory without changing the command portion of the word already there. The
most common use of the Y instruction is in address modification. Consider
the following problem: Add the contents of 0300 to the contents of 0400 and
store the sum in 0500; add the contents of 0301 to the contents of 0401 and store
the sum in 0501; and so forth, until all the values in Track 03 have been added
to the values in the corresponding sectors in Track 04 and stored in the cor-
responding sectors in Track 05. The coding for this follows:

3-11

INPUT CODES .% LOCATION e s g O ADGRESS NOTES
T

PR S :

1 1 : 1 1 1 1 1 1 1 1 = 1 1 1
PR T TS T W l,1,0,0f{ , , /B J[0 13,0 ,0] ’ Add content$ of corresponding sectors
L : i L, 0,0 ,AIOA,0,0] ‘ in Tracks O3 and 04 and hold sum in
i # L E i bl 020 4 ¢ ;H ;[O S 1010] ’ corresponding sector in Track 05.
TR B 1,1,0,3] 4 4 ,B8,1,1,0,0{" Bring instruction from Q000 into Acc.
L . M 1,1,048] , lAJ:I‘.I,I,.? 4 Add Z 000110 the instruction in Acc.
I T R R R 1,1,0,5] , , ,¥, 1, 1,0,0]|" Store modifjed address info instruction
L ¥ 14 ‘,_l;,,L' in_0000.
T 1 1,006, , Al 1, 13]" Add Z 0100 |to the instruction in Acc.
Loy ; L1 1, 0,071 4 Y ; byl 0,0] Store_modified address info instruction in
L oy T R S ’ 000I.
L ,t0.8)0 , , AL, 1,3]7 Add Z 0100] to the instruction in Acc.
T S 1,1,0,91 4 lYg 1,1,0,2]" Store modifidd address info_instruction in
L L 1 Ly 4 0002.
T T 11, 0,0] 4 4 i8¢l gl 13417 Subtract B 4600 from instruction in Acc.

o ; O [" ,T; |,1,00("’ Relurn to begjnning of loop if (Acc) negative.

PR el LZ=O,O, o, 1]’ HALT — also psed as conslant in_address
P T S g T L N modification.

oy L) P - IC? ,1,0,01° C usgd in address modification.
P SR R W W 1, 0,1, G5 ,B.O.G,O.?I'l Constant_used to test for end of loop.

. . |

The instructions in 1100 through 1102 perform the addition described in the

"Notes" column. The B1100 instruction in Location 1103 places the contents
of Location 1100, B0300, in the Accumulator.
in Location 1104 adds the contents of Location 1112, 20001, to the contents of
the Accumulator, B0300, resulting in BO0301, as follows:

B 0300 - Initial contents of Accumulator
+Z 0001 - Plus contents of 1112

B 0301 - Final contents of Accumulator

Then, the Al112 instruction

The YIIOO instruction in Location 1105 now replaces the address portion of
the instruction word in Location 1100, B0300, by the address portion of the
instruction word in the Accumulator, B0301.
B0301. The YIIOO instruction does not alter
the word in the Accumulator. Therefore, BO301 remains in the Accumulator.

struction in 1100 from B0300 to

The result is to change the in-

The A1113 instruction in Location 1106 adds the contents of 1113 to the con-

tents of the Accumulator, as fo

llows:

B 0301 = Initial contents of Accumulator
+Z 0100 - Plus contents of 1113

B 0401 - Final contents of Accumulator

The Y1101 instruction in Location 1107 now replaces the address portion of the
word in 1101, A0400, by the address portion of the word in the Accumulator,
B0401. The result of this is to change the instruction in 1101 from A0400 to
A0401. Notice the command portion, A, of the word in Location 1101 did not
change even though it is different from the command portion, B, of the word

in the Accumulator.

The A1113 instruction in Location 1108 adds the contents of 1113 to the con-
tents of the Accumulator, as follows:

B 0401 - Initial contents of Accumulator
+Z 0100 - Plus contents of 1113

B 0501 - Final contents of Accumulator

The Y1102 instruction in Location 1109 then changes the instruction in 1102
from HO500 to H0501.

The S1114 instruction in 1110 subtracts the contents ©f 1114 from the contents
of the Accumulator. This results in a negative word, as shown below, since
B0600 is mathematically larger than BO0S501.

B 0501 - Initial Contents of Accumulator
- B 0600 - Subtract the contents of 1114

Negative Word - Final contents of Accumulator
The T1100 instruction in Location 1111 will, therefoxe, g¢ransfer to the be-

ginning of the loop to add the next pair of numbers from Tracks 03 and 04
and store the result in Track 05.

At the beginning of the final pass through the loop, the ig&tructions in 1100
through 1102 read as follows:

Location Instruction
1100 B 0363
1101 A 0463
1102 H 0563

The final sum, therefore, is stored in 0563, The instruetfons i 1103 through
1109 then modify the above instructions to redad as follows:

Location Instruction
1100 B 0400
1101 A 0500
1102 H 0600

The S1114 instruction in Loeation 1110, for the figst time, results iB a posi-
tive word (zero) as follows:

B 0363 - Initial contents of Acc. as a result of the B 1100 instruction in
Location 1103.

+ z 0001 -
B 0400 - Contents of Acc. as a result of the A ill2 instruction in Loca-
tion 1104.
+ z 0100
B 0500 - Contents of Acc. as a result of the A 1113 instruction in Loca-
tion 1106.
+ z 0100
B 0600 - Contents of Acc. as a result of the A 111§ instruction in Loca-
tion 1108.
— B 0600
ZERO - Contents of Acc. as a result of the S 1114 instruction in Loca-
tion 1110.

The TIOO instruction in Location 1111, therefore, rather than branching back
to 1100 and through the loop again, allows the computer to continue to Loca-
tion 1112, where it halts.

INITIALIZATION

Notice the ZOOO01 instruction in 1112 is used both as a halt, when the loop ter-
minates, and as a constant by the Al112 instruction in Location 1104. Thisis
convenient if the program must be in a limited memory area in the computer.
Generally, however, this dual function is not used.

Taking another simple program, compute the product of consecutive pairs of
numbers on Track 03 and store these 32 products in Locations 0400 through
0431 as follows: (0300) x (0301) —(0400); (0302) x (0303) —>—(0401); etc. ,
through (0362) x (0363) —> (0431).

PROGRAM [INSTRUCTION S| conTENTS
INPUT CODES 5| LOCATION [orERATION] ADDRESS || OF ADDRESS NOTES
T
L 1 1 1 1 A ’
T
] 4
1 1 1 : 1 ' 1 1 1 1 1 8 b : 1 1 L
TR 0,00,0f , , lBJ:O,:’:,O,O!] . Compute the product of a pair of
I 0,0,0,1 L ,M,[0,310. 1l numbers From Trock O3 and store
v T
IV 0,002 , ,Hl[o,a,o,o] ’ on TracK 04.
Ly 0,0,0,3| , , lB=0,0,0,0 % Bring instrudtion from 0000 into Acc.
Ly, 0,0,0,4| , | ,A=0,01l,4 ! Add Z 0002]
R 0,0,0,5| , | 1¥,0,0,0,0 ’ Store modificd oddress into instr. in 0000
T 0,00,6[, , ,A=0,0‘Ll15 2 Add Z 0001
L b 0,0,0,7(, , ,¥,0,0,0,1]"’ Store modified address into insir_in 000!
t
L e 0,0,0,8] , ;| ,B= 0,0,0,2|"’ Bring instructipn from 0002 into Acc.
Ly 0,0,0,9} , , ,A,0,0,1,5]’ Add Z 000!
Ly T 0,0,1,0] , , ,¥,0,0,0,2|"’ Store modifigd address into instr.in 0002
TR oot 1 },, s0016} Sublract H 0432
Ly 00,12 | ,TEO,O‘OIO ! Test for end |of loop
L 0,01 ,3| , lU= 1,4,0,0]" Transfer to ¢utput pragram
Ly 0,0,1,4! , , ,2 =O ,0,0,2(” Constant used in address modification
N 0,0,1 5y b , 2 20 ,0,0,1 1" Constant used in address modification
VS T S W 0,0,1,6 PR |H{014|312 ’ Const used to test for end of loop.
1 1 1 i 1 1 1 1 1 1 1 1 1 |l 1 1 1 :
T AJ ’
1 1 1 : 1 Il AL Il i | A 1 1 1 : 1 L 1

Assume the program has been executed and the products in 0400 through 0431
have been printed out, or otherwise disposed of, so they are no longer needed.
With the program still in memory, a new set of data could be stored in Track
03, and the program restarted at Location 0000. Would it make the same cal-
culations on the data and store the answers in Locations 0400 through 0431 ?
In other words, after replacing the old data with new, could the program be
restarted and do exactly the same thing the second time? The answer is no,
because the instructions in 0000 through 0002 were modified during execution
of the program so that, when the program halts, these instructions read:

Location Instruction
0000 B0400
0001 MO0401
0002 HO432

SUBROUTINE CONCEPT

The program is set to process data on Track 04, not Track 03, and to store
the products starting at 0432 instead of 0400. These modified instructions
must be reset or "initialized" before the program is executed a second time.
One method for initializing these instructions is to enter a new program in
memory with the same instructions as in the original program. The more
efficient and preferred method is to write the program to be “self-initializing”

as follows:
INPUT EODES § LOCATION orsn;:ézluclﬁ;sss ; OF ADDRESS NOTES
1 1 1 1‘ 1 1 ¢ 1 1 | - 1 : 1 1 1
Ly 0,000| , , B =[0 ,3,0,0l|} Compute the product of a pair of
AT 0,0,0, 1|, , lM{[olzlolll 4 numbers| from Track 03 and
by 0,0,0,2| , | ,H=[014,0,0] ‘ store on| Track 04.
N 0,00,3| , B0,00,0|" Bring instrugtion from 0000 into Acc.
L b i 0,004[,, 4001, Add Z 00p2.
Ly 0,0,0,5| , |, Y ' 0,0,0,0}" Store _modified address info instr. in 0000.
Ly 0,0,0,6(, | 1A{O,O,I,S ’ Add Z 00QI.
e 0,0,0,7} , , ,Y,0,0,0,! ! Store moditled address info insir. in 000I.
L 0,0,0,8(, ,B%0.0.0,Z ! Bring instr. from 0002 into Acc.
T R T L 0,0,0,9 L ,A=O,Oll15 ’ Add Z 000\
Ly 0,0,1 0| , | ,Y= 0,0,0,2|"’ Store modified address into instr. in 0002.
L 00,1, 1| ,, ,5,001,6]" Subtract HP432.
L g. - 0,0,1,2} , ,T:0,0,0,0 ‘ Test for enft of loop.
. i ' i i 0,0, 3] oy ,U; 1,4,00/(" Transfer to putput program.
L oo0,1,4] ,,,2,0,0,0,2|" Constant uspd in_address modification.
L ; L 00,1,5{ , lZ;(MLO4 1|’ Constant used in address modification.
P 0,0,1,6]., | ,H{0,4‘3,2 ! Constant usgd to fest for end of loop.
TR 00,0, 7 , | B= 0,0,2,4|" Bring Z 0300 into Accumulator.
g g g 0,0,!,8| , , |y 0,0,0,0 ! Initialize ins{r. in 0000 to read B 0300.
L 4 0,0, 1, 9] , ,A;OIOIIJS ! Add Z 00O resulting in_Z 030L.
R 0,0:2.0] i 4 ler0,0,0,| ! Initialize 1ns)r. 1n 000! to read M 0301
ol e R] o,0,2, /|, , ,8,00,25|" Bring Z 0400 into Acc
L ; L 0,0,2,2] , , ,Y;O 0,0,2]" Initialize nsjr. n 0002 to read H 0400
T T 0,0,2,3|, , ,v,0,0,0,0 ‘ Branch fo béginning of loop.
L 0,0,2,4 s 12,0, 3‘.0‘.0 " _Constant us d I” initializing
IR 0,0,2,5 ; 2,0 .4|.0 ,0 ’ Constant u ed in intighzing

The instructions in Locations 0017 through 0025 are initializing instructions
which make the program self-initializing when additional data are to be pro-
cessed by it. After the program is in memory, it can be executed as many
times as desired by starting execution at Location 0017, not 0000. All pro-
grams should be self-initializing. The execution of the program then starts
at the beginning of the initializing instructions.

The solution to a problem often requires that the same operation be performed
This can be graphically shown in the form of a “Flow Chart"

more than once.

(Figure 3.7):

Operation
A

Operéltion N

Operation
C

Operation
B

Operation D
which yields @
final result

FIGURE 3.7 Typical Flow Chart

Note that the example above constitutes an extreme simplification of a program-
ing flow-chart. In actuality, each operation would be plotted out in every detail,
so that Operation A alone might represent a series of steps which could cover
an entire page or more.

Assuming now that Operation B is long and involved and the program coded as
flow-charted above, it would further be necessary to show the same long se-
quence of instructions for Operation B twice. Obviously, it would be prefer-
able if the instructions for this operation could be written just once and used
again wherever required in the program.

If this is done, the program could transfer (with a U instruction) at the end of
Operation A or C to the beginning of the sequence of instructions which per-
forms Operation B. The question now arises, how does one exit from (or
branch out of) Operation B to the appropriate place in the program- the begin-
ning of either Operation C or Operation D? The exit instruction from Operation
B is a U instruction with a variable address portion and will be set prior to trans-
fer to Operation B. At the end of Operation A and before the transfer to Opera-
tion B, the address portion of the U instruction must be set to exit from Opera-
tion B to Operation C; at the end of Operation C and before entering Operation
B, the address portion of the U instruction must be set to exit from Operation

B to Operation D.

This introduces the R instruction:

Instruction Explanation

R (Counter) + 1 -address portion of (m); that part of (m)
other than the address portion is unchanged.

In other words, the contents of the Counter Register plus 1 replace the address
portion of memory location m. At the time an instruction is executed, the
Counter contains the location of the next instruction to be executed. Adding 1
to the contents of the Counter when the R instruction is executed gives the loca-
tion of the R instruction plus 2. Therefore, the R instruction causes its own
location plus 2 to replace the address portion of (m). The rest of the word in
location m is unchanged.

The skeleton coding for the flow-charted problem could look like this:

INPUT COBES g LOGATION OPERAl:SOTr:]giEg;.SS g OF CABORESS NDTES
B

1 A 1 = L 1 1 1 1 1 1 1 lI 1 1 1
P 0,000/, , ,Agth, PP L
P S O L1 pot gty g B Operation A
e 0,0;1,0[, , ANYS, !
Ly 0,0, ¢,V ,0,04,0 ! Set exit from Pperation B to return to_00I3.
Ly 0,0,1,2} ,,,0,0,0,3,2 : Enfer Operatipn B
L 0,051,3 L ANY, ‘

L Ly PIRLIT S 4 Operation C
by | 0052000, AN,]
L 0,0,2,1 iy ,R_,r0,0,4.0 4 Set exit from Qperation B to return to 0023
Ly 0,0,2,2| , , |U=0|0.3,2 ¢ Enter Operation B
1 1 1 l 1 1 il O|O|2|3 - IA!r‘-lYl 1 1 d
L \ 1‘- \ NETETRTINY B ! Operation D
T 003,0 ,, AfNv, , |’
P! 0,0,3,1,,,2,0,0,0,0 ! End - Halt
L e 0‘01'3.2 L .AIJ:IY. T Entrance Poirt Y

.

i 1 : 1 1 1 Ll 3 1t 1 =‘ 1 1 1

| | 0,0,3,9]| , , JANY, , , |’ } Operation B

I .. 0,040/, , ul 1] Exit Point

3-16

Operation A extends from Locations 0000 through 0010. The RO0040 instruction
in 0011 sets the address portion of the U instruction in 0040 to 0013 (location

of R0040 instruction plus 2). The UOO032 instruction in 0012 branches to Opera-
tion B. A branch to Operation C will occur at the end of Operation B because
the U instruction in 0040 now reads UOO013.

Operation C extends from Locations 0013 through 0020. The R0040 instruction
in 0021 sets the address portion of the U instruction in 0040 to 0023 (location

of R0040 instruction plus 2). The UOO032 instruction in 0022 transfers to Opera-
tion B again. This time, at the end of Operation B there will be a transfer to
Operation D, because the U instruction in 0040 now reads UO023.

Operation D extends from Locations 0023 through 0030, and a Halt is at 0031.

Operation B, in Locations 0032 through 0040, is termed a “subroutine, " and
the instructions in Locations 0000 through 0031 constitute a "'source program. '
The source program may "call" (use) the subroutine any number of times. In
the example, the subroutine is only called twice. The entry point to the sample
subroutine is Location 0032 and the exit point is 0040. Actually, the entry point
does not have to be the first instruction in the written subroutine as in the ex-
ample, nor does the exit point have to be the last instruction. Subroutines are
programs which are used many times. Thus, like all programs, they may
start and end anywhere in the written program.

The R-U sequence which is used to call the subroutine is termed a “calling
sequence. " In the example, the calling sequence consists merely of these two
instructions. Some subroutines may require more elaborate calling sequences.

For example, some subroutines may require, before being entered, that certain
information to placed in the Accumulator. Also, it is possible to "nest" sub-
routines to any desired depth; ie., one subroutine could call another subroutine,
which in turn could call still another, and so on. When standard subroutines
from the Commercial Computer Division library are acquired, they are ac-
companied by a program description which details the function of the program,
how to load it, what the exact calling sequence must be, and any other infor-
mation necessary for its operation.

BINARY NUMBER SYSTEM
& NN NN NN A AR AN AR NN N N N A A NN A N NS NN NN NN NN N NN NN A

An understanding of the binary number system is necessary before proceeding
with a further examination of LGP-21 programming concepts. Each digit of a
decimal number has a multiplier associated with it. Take, for example, the

number 237.
Multipliers: etc. —— 1000 loo 10 1
Digits: 2 3 7

Starting with the least significant digit (first digit to the left of the decimal
point) the associated multiplier is 1 (or 10Y); moving one :E)l_ace to the left, the
multiplier is 10 (or 101), then 100 (or 102), 1000 (or 10%), etc. The multi-
pliers, starting with the least significant digit and moving to the left, are con-
secutively higher powers of 10. The number 237, then means:

7 ones plus 7x 1= 7
3 tens plus 3x 10=30
2 one hundreds 2 x 100 = 200

Total 237

The binary number system is similar to the decimal system, with two impor-
tant differences. First, the multipliers starting with the least significant
digit and moving to the left are consecutively higher powers of 2: 1 (or 20),
2 (or 21), 4 (or 22), 8 (or 23), etc. The second difference is that any digit
position may contain only a O or 1, whereas, in the decimal system, any digit
position may contain 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. An example of a binary
number, then, is

Multipliers: etc. =——128 64 32 16 8 4 2 1
Digits: 1 1 1 0 1 1 0 1

This binary number, 11101101,is constructed just like the decimal number 237,
above.

By adding the respective multiplier values for each binary digit, starting with
the least significant digit, we find that

1x1 = 1
0x2 = 0
1x4 = 4
1x8 = 8
0x16 = 0
Ix 32 = 32
Ix 64 = 64
Ix 128 = _1_2_8

237

Thus, the decimal number 237 is equivalent to 11101101 in binary. The decimal
system is based on 10 digits, and the binary system on 2. The standard notation
used to specify the base of a number is a subscript. Therefore, the equivalence
could be written:

23749 = 111011012
To convert a binary number to its decimal equivalent, write the multipliersabove

each of the binary digits, then total all the multipliers that have the digit ""1" be-
low them. For example, find the decimal equivalent of 110000110102:

4-1

42

102k 513 250 128 o D 14 d 9 1 0

1024

1562, = 110000110102

One way to convert a decimal integer (whole number) to its binary equivalent is
to divide the number by 2. The remainder becomes the least significant binary
digit; the quotient (e.g. , 237 + 2 gives a quotient of 118 and a remainder of 1)

is again divided by 2 and the remainder becomes the next binary digit. This
process continues until the quotient is zero. The remainders become the binary
number, where the first remainder is the least significant binary digit and the
last remainder is the most significant (far left) binary digit.

Example: Convert 23710 to its binary equivalent.

Quotient Remainder

2| 237
2[118
2]_59
2| 29

1 least significant
0
1
i :
2 0
2.3 1
21 1
0 1 most significant

Therefore, 23719 o 11101101,

In the decimal system the digits to the right of the decimal point (fractions)also
have multipliers. Take, for example, the number .6875:

Multipliers: 1/10 1/100 1/1000 1/10,000——= efC.
Digits: 6 8 7 5

The most significant fractional digit (first digit to the right of the decimal point)
has a multiplier of 1/10 (or 101y; movin§_one place to the r‘if‘_ht, the multiplier
is 1/100 (or 10-2), then 1/1000 (or 1073), 1/10,000 (or 10~4), etc. The multi-
pliers, starting with the most significant digit and moving to the right, are con-
secutively lower powers of 10. The number .6875, therefore, constitutes a
series of additions, as follows:

6 x 1/10 = .6

8 x 1/100 = .08

7 x 1/1000 = .007

5x 1/10000 = .0005
.6875

Again, the binary system works similarly. The multipliers, starting with the
most significant fractional digit and moving to the right, are consecutively lower
powers of 2, namely 1/2 (or 271), 1/4 (or 2-2), 1/8 (or 2-3), 1/16 (or 2-%), etc.
Again, a digit position can only contain a 0 or a 1. An example of a binary frac-
tion is

Multipliers: 1/2 174 /8 1/1s—=€tc,
Digits: .1 0 1 1

To convert a binary fraction to its decimal equivalent, the multiplier values
of the binary fraction are added again, just as in the decimal example:

ADDITION IN BINARY

SUBTRACTION
IN BINARY

1 x1/2 = .50
0x1/4=_.00
1x1/8 = .125
1x1/16 = .0625
.6875

Therefore, . 6875yg = . 10112

One way to convert a decimal fraction to its binary equivalent is to multiply
successively by 2, ignoring any digit to the left of the decimal point in the mul-
tiplicand, when performing the successive multiplications.

Example: Convert .68757¢ to its binary equivalent.
.6875
1
1x37 50

x 2 (ignoring the "1" to the left of the point in the
multiplicand)

0.7500
2
1x5000
x 2 (ignoring the "1" to the left of the point in the
multiplicand)
1.0000

Continue until there are all zeros to the right of the decimal point, as on the last
multiplication above, or until the number of multiplicands equals the number of
bits to the right of the binary point in the number. Going back to the first result,
write down the digits to the left of the point in each product; place a point in front
of these to get the binary equivalent of the decimal number.

Therefore, .687510 = /\10112

In the decimal system this is called a decimal point; in the binary system, a binar:
point. The binary point is usually represented as a caret (A). Also in binary
terminology, the word "bit" is often used synonymously with “binary digit"-thus,
"a 32 bit number” and "a 32 digit binary number” are the same thing.

Addition is the same as in the decimal system, except, 1 + 1 = 0 with a 1
carried.

Examples: 1 10 11 111
1 +1 + 1 + 11

10 11 100 1010

Subtraction is also the same as in decimal, except, 0 -1 = 1 with a 1 borrowed:
i.e. borrow 1 from the left and add 2 to the digit on the right, just as you would
add 10 if working in decimal.

Examples 0 _10 1010 100
-0 1 1.-111 11

ol

4-3

MULTIPLICATION AND
DIVISION IN BINARY

NEGATIVE NUMBERS

4-4

. The rules are the same as in decimal.

Examples: 0x0=0 0+0=0
1x0=0 0+1=0
1x1=1 1-+1 =X

Once the binary configuration of a number has been established, it is not diffi-
cult to imagine what it looks like in a memory location. For example,

.375,4 = AOllp
appears in the LGP-21 as
0 0110000000000000000000000000000

position of binary point* t spacer is always 0
sign bit, always 0 for positive numbers.

Bit position zero of a computer word will indicate whether the number is posi-
tive or negative. However, the sign of a positive number is not changed by
simply inserting a 1 in position zero. Instead, negative numbers are held in the
computer as a 2's complement.

Consider, for example, the number -. 375 which is represented in.binary as:

ofr12]af«fsfetr]stv] [29]30] 31 b positions of computer word
1101000000 ...00°0

The quickest way to see why this is the computer's way of representing -. 375;
is to add it as a binary number to the representation of + . 375;:

,.DII Iz | Jlll5|6|7|a| Jﬂbn positions of computer word

+.375y¢ = 0,01 10000 00O0.

-.8759= 1,101000000... 000

10000000000...00°0
If the 1 to the left of bit position zero is dropped, the result is O, just as
.37510+(-. 3751¢) =0.
One way to obtain the representation of a negative number is the following:
1. Change its sign to + and write its binary representation.
2. Starting at the left, change all the I's to O's and all the O's to I's,

until the last 1 is reached. This 1 and all the following zeros re-
main unchanged.

L

The largest positive number the LGP-21 Accumulator can holds is

O1111111111111111111111111111110

* The binary point for a number is never actually stored in memory. The loca-
tion of the imaginary binary point inside the computer is between bit positions
0 and 1. However, for convenience in expressing integer values, the binary
point is often assumed to be moved to other positions. This relative position
is referred to as "g" and is discussed later in this chapter.

INSTRUCTION WORDS

If the negative value of this number is used, it appears as

10000000000000000000000000000010

The number -1, which cannot be converted according to the above rule, appears
as

10000000000000000000000000000000

Notice that the first bit position of all positive numbers contains a zero, and
that of all negative numbers a 1. It is the sign bit of the Accumulator which
is examined by the circuits associated with the Conditional Transfer instruc-
tion.

The format of a word which is interpreted by the computer as an instruction is
as follows (Figure 4.1):

2[3]4]5[e[7]8]9 fio]ni213]aa 1s]ie]17]18 [19]20]21 [22]23] 24] 25] 26]27]28] 29] 30] 31
Command @% Track Address Sector Address

L Interpreted only in conjunction with T, I, P, and Z instructions.
FIGURE 4.1 Instruction Word Format

The only bits the computer considers when interpreting an instruction word are
0, 12 through 15, and 18 through 29. Other positions in the word do not affect
the meaning of the instruction.

Each of the command symbols or letters has a 4-bit code. This code is held in
positions 12 through 15 of the instruction word. The 4 positions 12 through 15
allow for 16 different 4-bit patterns. The 16 eommand symbols and their 4-bit
codes are listed in Figure 4.2 (Note: some of these have not yet been discussed.

Symbol Command Code
Z Halt; Sense and Transfer 0000
B Bring 0001
Y Store Address 0010
R Set Return Address 0011
I Input or Shift 0100
D Divide 0101
N N Multiply (save right) 0110
M M Multiply (save left) 0111
P Print or Punch 1000
E Extract 1001
U Unconditional Transfer 1010
T Conditional Transfer 1011
H Hold 1100
C Clear 1101
A Add 1110
S Subtract 1111

FIGURE 4.2 List of LGP-21 Commands

45

46

Examples of some instruction words:

DECIMAL BINARY
——e— T T 1 1 1 [1 ICOMMAND TRACK | SECTOR |
oftpB & 14 o 1) 121]3{a]5) 6] 7] 18]19]2021]22[23]24] 25| 26]27|28] 28] 3d 31
B0523 o|olojofo|o|ofofolofojojo(ojOf1[0ojODOD P OLPO|ILPALLOO
S 6317 ololo|o[olo[o|ofojojoforfrfr|ifojop PPt PPPPPLPIO

In the discussion of the Y instruction, it was explained that this instruction
causes the address portion of the contents of the Accumulator to replace the add-
ress portion of the contents of location m. This means that the contents of bit
positions 18 through 29 of the Accumulator replaces the contents of bit positions
18 through 29 of memory location m.

Also discussed earlier was half of the rule for track-and-sector arithmetic when
adding two instruction words. The rule was that, when the sector comes to 64
or more, subtract 64 from it and add 1 to the track. Now, consider track modi-
fication. When a track address exceeds 64, a 1 is carried into bit position 17
(one of the bits which are ignored in an instruction). This allows “end-around”
programming; i. e. , one could consider the tracks as being in sequence,
numbered 00, 01, 02,.. .60, 61, 62, 63, 00, 01, etc. For example, if the add-
ress 1500 were to be added to the address 5329, the resulting address would be
0429 and a 1 bit would be carried into bit position 1'7. This carry is important
if an address is used to terminate a loop which results in an "end-around"
operation.

It was also noted earlier that adding Z is the same as adding zero. These rules
are based on binary arithmetic. Some examples of arithmetic operations using
two instruction words follow:

DECIMAL BINARY
COMMAND] TRACK _ SEC | OR

o|1|2]|3[4}5]6]7]8]9 10{11]1213)14]15|16]17[18]19|20]21 [2: | 13]24) 25|26 2: | 28[29 Bo|31
B4218 0]0]/0{0/0]0]0]0|0]0]0|0]0]|0|0i1|0|0|1|OfL [O]1 [3|O{1L{0OP [1]|ofo]o
+20056 00| 0f0[0|0|0[0j0{0|0f0]O[0|0{0|0]|O(0|Of0.|©0]O[3|1|L|1 P [o]ofofo
B4310 0/0]0|0|0|0]|0|0|0|0]0{0]O[0]0{1|0|Of1]O]|L (O]l |1|O[0O|1 P [1|ofo]|o
H3638 J|0]0j0({0|0{0|O[0|O|0O]|O|1{1|0]|0]0O|O(1]O|O] 1]O|3]1[0O|0 1 | 1{O[O]O
+ 23300 9|0} 0f0[0]|0{0|0]O|0[0]OJO[O]OO]OjOf1|O[O|QI0O (L OjO(OI0|0O]0]0]O
HO538 J|of ojofo|0jo[o|ofo|O|0Of1|1|0|0|O|1|0fOfOf1]Of 1|1{O|O|L [1]O[O[O
S4215)| 0|00 0|0f0|0]0|0j0]O]L{1}1|1|0{0f1|OfL|O1|3]OJO|L L |1|1]0]|O
+ 23551 J|0[{0]0j0|0|0}0[0[0O|O}0OfO|OjO|0Oj0O|O|1|O[O]O]1 [1{1[1]|0{0|1|1|O[0
S1402)| 0] 0]ofojofojojo|o[0]O]2{1|1{1]O|1|OfOfL1]| 1|1|3]0]O|0O(O|1]|0]O|O
HO301)| 0] 0f of ojo|o]0j0f{0fo|o]L{1]0]|O]O|O|O|0JO{!O11 [1]0]0|0f0]| O 1]O|O
-HO0500 300000000000110?000'00'10100000000
-S6201 111111111111111]'.11111 1/113]0]0{0{0|0]1 (0[O

DATA WORDS

Binary Data

Notice that the bits in the Command portion of the instruction word can be mani-
pulated, too. For example, if a Bring command is added to a Hold command, the
result would be a Clear command.

DECIMAL BINARY
COMMAND TRACK SECTOR
o[23]+ 5[6] 7] 8] o o[ni h2[ia[iais fiehzis fio[20]21[22] 23] 2a[25 2¢]27]28]29]3 [31
B1408 ojo|ojojolojofojofofojojojofo|1|O]OjO[O|1|1[{1}0|0O(0|1|{0|0]0]O|O
+H1026 0|o|0|0j0jo(0[0|OfO|0OfO|1|L[0O[0O]j0O|0OJO|O[1[Of1|OfjO|1[L|O(L[0]|O]O
C2434 o|ojojojo|ojo(ofojOiO|0Of1]|1[0|1[0[0]0|1{1|0]|0|0{1}0[0}0}1]0]|0|O

Therefore, care must be exercised when adding or subtracting instructions (e.g.,
to test for the end of a loop) so that the desired result will be obtained.

The format of a word interpreted as data by the computer is shown in Figure 4.3.
It consists of a sign (in bit position zero) and 30 bits of magnitude. The 31st, or
spacer bit, is always zero in memory. A computer word can represent data in
a number of different forms, including:

1. Binary

2. Binary-Coded Decimal (4-bit format)

3. Alphanumeric (6-bit format)

[2]a]«[5] 6789 [to[n]12[13[14]15[16 17|18 1912012122123 24125126127128129130~31
<t DATA [0

FIGURE 4.3 Data Word Format

When the number 125. 25 is handled in the computer as binary data, it appears
in this form: 1111101,01,. Since there are 32 places in a computer word, the
question arises: Where in the 32 places is the 1111101,01 positioned. The
answer is that it can be anywhere in the word. The convention for denoting the
position of the number is to specify the value of q; q being the position of the
least significant integer bit, and the caret symbol indicating the position of the
binary point in the computer word. For example:

Decimal No. Computer Word
o|1|2[3la|5]|6|7]|8]|s|iof1]i2|13]14]I5]I6]17]I8]I9|2 2l2223l2‘2 26|27|28[29{30| 31

125.25@q =12 | 0{0{0{0[0|0|1|1(1|1|1}0[170|1|0]0{0]0|0(0{0]|0|0|0{0}0|0|0|0]|0|0

125.25@q =10 o{ololo|1|1|1|1|1{o[1}0|1]0|0|0]0|0|0|0|0|0]0|0|0|0|0]0|0|0]0}0

47

Binary-Coded
Decimal Data

4-8

The letter q is sometimes dropped and the decimal number written as 125.25 @ 12
or 125.25 @ 10. This convention also applies to instruction words. Therefore,
for the example above, we could write that the command is @ 15, the track address
@ 23, and the sector address @ 29.

Since the position of the binary point in a computer word is merely an assumption
for the programmer’'s convenience, the computer does not know where it is, but
assumes it to be between bits 0 and 1, or at a q of O for all numbers, including
results of arithmetic operations. The programmer therefore considers a num-
ber (as interpreted by the computer) to be multiplied by 29, where q is the
assumed binary point.

Example:
Number as Interpreted Number as Interpreted
Computer Word by Computer by Programmer
0100 ~------- 0 .5 .5x 29

If the programmer’'s q is 2, the number is .35 x 22 or 2; if his q is 3, the number
is .5 x 2% or 4. This is analogous to multiplying by 10%¥ in the decimal system by
moving the decimal point "x" places to the right.

When decimal data is to be entered into the computer, it can be read in and con-
verted to binary by one of the data input subroutines available from General Pre-
cision. The q of the binarized data is specified by the programmer. Care must
be taken to specify a q at which the data can actually be held. The q can be de-
termined only when the largest value is known which the subroutine is being asked
to read at a given time. This means that the programmer must specify a q at
least large enough that the largest data value can be binarized to that q. Further,
if the programmer wants to retain as much significance to the right of the binary
point as possible, he should not make the q any larger than necessary.

By consulting the Powers of 2 Table, (Appendix C), it is easy to determine the
largest number that can be held at any given q and the de%imal places of accuracy
possible to the right of the binary point. For example, 2 2°51Z means that at a
q of 9, the computer can hold binary numbers ranging from -512 to almost $512,
as shown below:

DECIMAL BINARY

ol 1[2]3]4]s]e]7]8l9 1o]n[s2]1afaa]15rs]17]18 |9 [20]21]22] 23]24] 25] 26] 27] 28]29]30] 31
512 @9 100000000\000000000000 ofofofojojojolojojo
511.9...9@9 |O|1{1{1{1|1{2|1)1j1{2{1j1|2j2f1|1f2{2|2|{2|L{1|2|1f2|L{1|L|L|L[O

To determine the precision to the right of the binary point at a q of 9, one must
consider how many binary places there are between positions 10 and 30 inclusive
(position 31 is the spacer bit). This would allow 21 binary places. The Powers
of 2 Table shows that 2 21- [000000476..- Therefore, the programmer can
safely expect, at a q of 9, to hold in binary the equivalent of decimal numbers
accurate to 6 decimal places to the right of the decimal point.

Each decimal digit has a 4-bit code as follows:

Decimal Digit Code Decimal Digit Code
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

Alphanumeric Data

Binary-coded decimal data is held in groups of 4 bits, each group represent-

ing a decimal digit. Up to 8 such digits can be held in a 32-bit computer word.
Examples: .

Decimal No. Binary-Coded Decimal Representation
|

o|1]|2]3]|4|5]|6]|7|8]9[10]11]12]13[14]I15{16 17|18 |i19[20121[22[23]|24)|25|2627|28|29|30|31

125 @ 16 ofo|oo|o|olo[o|1|0]o|1]o]o|1]o|1|0|0]0[ofo]0|o|o[o|o|o|0|o[o]o
1 >]
6039481@30 | o|ojo|o|1]1]o]o[ojo[oo[o[1]1|1]0fo|1|0|1|0|0|1|0]0|0|0]0]o]|1]0
5 (3) 4] 1
91260572 @ 31 |1/of|Llolojo[1l0]0[1[ofo|11]0l0]o[0]alo[1]0]1[0]1]1]1]0]0j1]0
: 1 ; € 4 1 >

It should be observed that the same number in binary-coded decimal and in
simple binary presents two entirely different bit patterns:

125 in BCD @ 30 gim o = 00
125 in Binary @ 30 gsss5= 00

Decimal data enters the computer in binary-coded decimal; usually it is convert-
ed to binary and stored. However, there are some instances when this conversion
is not necessary. If it is an identification number (such as a stock or employee
number), has only numeric (no alphabetic) characters, and the problem requires
merely that the program be able to determine its relationship to other identifica-
tion numbers-equal, not equal, less than, or greater than-binarization may be
unnecessary. For even though the computer performs pure binary, not binary-
coded decimal arithmetic, it can subtract one binary-coded decimal number
from another and use the sign of the difference to indicate relative magnitudes.
This is possible because the two numbers, as interpreted by the computer, re-
tain the same relative magnitudes as they have when they are interpreted by
people as binary-coded decimal numbers. For example, assume X and Y are
two binary-coded decimal numbers at the same q and that Y is greater than X.
When they are interpreted by the computer as binary numbers at a q of 0, Y

will still be larger than X. The result of subtracting Y from X will, of course,
be meaningless except for the sign. Note however, that this type of arithmetic
is not possible when either of the binary-coded decimal numbers has a binary

1 in bit position zero, as the computer would then consider it a negative number.

Data binarization is also unnecessary for a one digit number and for data which,
after being entered, becomes part of the output but is used in no other way.

When data consists of a combination of alphabetic and numeric characters—
such as names, identification numbers which also contain alphabetic charac-
ters, or typewriter control codes-it is called alphanumeric. This kind of data
must be stored in 6-bit form. That is, 6 instead of 4 bits must be stored for
each character, since four bits can only represent 16 different characters
which is obviously insufficient for all the numeric and alphabetic characters
available.

Appendix C contains a list of all available characters and their 6-bit codes. The
first four bits are called the numeric bits and the last two, the zone bits. Notice
that, in some cases, two characters have the same four numeric bits and can be
distinguished only by their zone bits. The programmer must specify for every

HEXADECIMAL
NOTATION

410

character which enters the computer whether he wants it recorded in memory

in 4-bit or 6-bit mode. When entering strictly numeric data, the 4-bit mode
should be used, as no two digits have the same numeric bits. However, for alpha-
numeric data input the 6-bit mode should be used, so that distinction between
characters with identifical four numeric bits is possible; e.g., between F and U.
A 32-bit word can hold five alphanumeric characters. Example: "LGP21" in
6-bit format at a q of 29 appears as follows:

00011010111010000100101000011000
L G P 2 1

There are other forms of internal data representation (such as floating-point),
but their discussion is not necessary in this manual.

Since it is awkward to write thirty-two O's and I's, a shorthand or hexadecimal
notation for writing computer words has been devised. To find the hexadecimal
representation of a computer word, divide its 32 bits into eight groups of four
bits each. There are 16 possible combinations for any group of four bits. There-
fore, each combination of four bits can be represented by one of a group of 16
characters, zero through W, used for this purpose, as well as the decimal
equivalent of the 4-bit numbers. This is shown in Figure 4.4.

Binary Hexadecimal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 1 7
1000 8 8
1001 9 9
1010 F 10
1011 G 11
1100 K 12
1101 Q 13
1110 14
1111 W 15

FIGURE 4.4 Hexadecimal Equivalences

Some examples follow:

Decimal Number: 23.75 @ 14 23 .75

6 9 10 11|12 13 14 15|16 17 18 19(20 21 22 2124 25 26 27|26 29 30 3|

01 234567
Computer Word oooo0oo0OpP0O10]11~110000000/0000(0000

Hexadecimal Word 0 0 2 ' 8 0 0 0

Decimal Instruction: B 2917

COMMAND= | TRACK=29 SECTORs 17
0 | 2354 5 6 7|88 I0n|i2 13141516 17 1B B [2021_22 2424 25 26 27128 29" 30 31
Computer Word: 0000[0000pO0OOPOOTIQGOOTITIIOTIO
Hexadecimal Word 0 0 0 1 1 K
Alphanumeric Data: LGP21 @ 29] . \
L 2
Computer Word: 0 1 2 3[4 5% 78 9 10 I[12 13 14 1516 17 18 19720 21 22 23/24 25 26 27|28 29 303I
O0OTI[IOTIO[TITIO OOO(IIUUIOIOUUUII|U~08
Hexadecimal Word|1 F Q B I4 F |1 Is

Since the last character involves the spacer bit, it will normally be one of the
eight even characters, which have zero as their fourth bit: 0, 2, 4, 6, 8, F,

J7 Q.
Decimal to Hexadecimal A method for determining the appearance of numbers in the LGP-21 as sequences
Conversion of thirty-two O's and I's was given earlier in this manual. Now a simpler method

shall be explained which provides the eight hexadecimal characters which can be
used to represent a given number at a given q.

Suppose 94.87654, at a q of 7, is to be expressed in hexadecimal. Two steps are
required to find the first character:

1. Subtract the q of the given number from 3
3-gq=x therefore 3 - 7 = 4
2. Evaluate 2% and multiply this value by the given number:
2¥(number) therefore 27%(94. 87654) =
(. 0625)(94.87654) =
2.92978375

The first hexadecimal character is 5_

Each of the remaining characters requires a single process:
3. Multiply the fractional part of the previous product by 16 (always 16,

regardless of q). The integer part of the new product is the next
hexadecimal character.

Thus, in the example given:

. 92978375 . 30784
X 16 X 16
14.87654000 4.92544
.87654 . 92544
X 16 X 16
14.02464 14.80704
. 02464 .80704
x 16 X 16
0,39424 12.91264

. 39424

X 16

6,30784

411

Hexadecimal
Words

Instruction

Since the hexadecimal characters equivalent to 14 and 12 are Q and J, respec-
tively, the hexadecimal representation is

94.876541(@ 7 = 5QQ064QJ

The fractional portion after the last multiplication, .91264, is greater than .5,
so it may appear that the correct hexadecimal representation for 94.87654 at a
q of 7 is closer to 5QQ064QK than to 5QQ064QJ. However, it may be recalled
that the last character involves the spacer bit, and so must be even: 0, 2, 4, 6,
8, F, J, or Q. Therefore, 5QQ064QJ is the best possible approximation in the
LGP-21.

This example illustrated a positive number. For negative numbers, one pre-
liminary step is needed: subtract the negative number from the power of 2 which
is 1 greater than the given q. For example, suppose the first two hexadecimal
characters are to be found for the number -3.1415927 at a q of 3. First, the
number must be subtracted from the power of 2 which is 1 greater than 3

i,e., 2

2% - 16.0000000
number = -3.1415927
12.8584073

Then, proceed as with positive numbers: multiply by 23-3 = 20 = 1. No multi-
plication is necessary for this step.

12.8584073
Thus, the first character is J (decimal value 12).

.8584073
X 16
13.7345168

The next character is K (decimal value 13), and so on.

Instruction words as well as data words may be represented in hexadecimal.
The Command portion of an instruction occupies bits 12 through 15 and can be
represented by a hexadecimal character. A complete list of the LGP-21
commands and their hexadecimal designations is given in Figure 4.5.

COMMAND BINARY HEXADECIMAL DECIMAL
VA 0000 0 0
B 0001 1 1
Y 0010 2 2
R 0011 3 3
I 0100 4 4
D 0101 5 5
N 0110 6 6
M 0111 7 7
P 1000 8 8
E 1001 9 9
§] 1010 F 10
T 1011 G 11
H 1100 J 12
C 1101 K 13
A 1110 Q 14
S 1111 W 15

FIGURE 4.5 Hexadecimal Designation of Commands

Thus, the hexadecimal word 8W517F36 would appear in memory as

T ok Tl }

1o o] 1]1]1]1]o] 1 0 1 0lo oftfo]1]t]t]1]oftfofofoft ftfofifi o

8 \u% 5 1 7 F 3 6

t,1,2,3,4,5,6,7,8,910,11,12)13,14,15,16,17 18, 19, 29 2| 22,23 24 25,26 27,28,29,3q 3

Since bits 12 through 15 are 0001 (00012 = 1;q), which is the binary equivalent
of the Bring command, this word would be interpreted as a B instruction if it
were to reach the Instruction Register.

The six bits, 18 through 23, contain the track portion of the operand address.
In the above example, the bits are 111010. Their decimal equivalent is

ste.e=gm § F ¢ £ o 1292=3
1x 16 =16

1x 8= 8

ox 4= 0

1x 2= 2

ox 1= 10

58

Therefore the track number is 58.

The next six bits, 24 through 29, contain the sector number. These bits are
001101, so the sector number is 13, according to the same conversion process:

el 3" ¢ £ 1 ¢ 1 =o0x32. 0
O0x16= 0

1 x 8 =8

1 x 4 =4

o x 2=0

1 x 1=1

13

413

In summary, the hexadecimal word 8W517F36 is treated as a B5813 instruction,

if it is in the instruction register.

B track 58 sector 13

100011110101000701111010001101'10
e by S e e e
8 w 5 1 7 F 3 6

NUMBER SCALING FOR THE LGP-27

BN NN AN NN AN AN AN AN AN N AN A N AN NN AN AN AN NN NN AR NN AN NN AN AN NN NN NN NN NN NN

SCALING

The LGP-21 considers all numbers to be within the range -1<n<+l. How
then, can one use a number like 50. 5625;,?

A natural approach would be to move the decimal point two places left, until
a number is obtained which can be handled by the computer; namely . 505625, .

However, this process, known as decimal scaling, is not accurate enough for
the LGP-21, and since the computer performs all internal computations in
binary form, a preferable approach is to use binary scaling. This means
moving the binary instead of the decimal point.

For example, the binary equivalent of 50. 5625, is
110010,1001,

This configuration suggests moving the binary point 6 places to the left to ob-
tain a satisfactory fraction, namely ,11001010015. This process is called
g-scaling; in this case, scaling the number at a q of 6 (arithmetically:
multiplying by 275y,

It would be rather tedious, however, if the programmer had to convert his
data — which is normally stated in decimal form — to its binary equivalent.
Fortunately, this is not necessary. Appendix C contains a Powers of 2 Table
which will tell at a glance that 50.5625 would yield a fraction after a 6-place
shift of its binary point.

The table is used in this manner: the left column, labelled ""2N", shows that
the first power of 2 greater than 50.5625 is 64. Next to the 64, in the cen-

ter column, is the number 6. This means that 50. 5625, becomes a fraction
if its binary point is shifted left 6 places (or more). Thus, when the number
is scaled at a q of 6, it will be within the range of the LGP-21.

It should be emphasized that the appropriate scaling value in the Powers of 2
Table must always be chosen as the next number greater than the one to be
converted. For example, if the number above had been 64.000 instead of
50.5625, it could not have been held at a q of 6. The largest number for which
this scaling value is valid is 63.999. The rule is not as strict for negative
numbers. Both -63.999 and -64 can be held at a q of 6; but -64.001 can not.

(It may be recalled that -1 can appear in the LGP-21 unscaled, while +1 can
not.)

Sometimes it is desirable to scale numbers which are already fractions, in or-
der to obtain greater arithmetic precision. To do this, a negative scale factor
(-q) is specified. For example, the scale factor for the number .01234;q is de-
termined by finding the next number larger than .01234 which appears in the
right-hand column (labeled "2"N") of the Powers of 2 Table-namely .015625.
Next to it, in the center column, is a 6. This means that .01234 can be stored
at a q of -6 (or any larger q: -5, -4,. . . 0, 1, 2, etc).

In summary, g-scaling operates as follows:

1. If a number can be expressed exactly in no more than 30 bits and is
g-scaled for the LGP-21, it can be stored as an exact number.

2. If a number has to be divided by 2 (that is, multiplied by 1 at a q of 1)
to align binary points or avoid overflow, only one of the 30 bits of mag-
nitude of the number is lost.

5-1

3. If the binary representation of a number is known, its appearance at
any q in a memory location or in the oscilloscope display can be
written down. For example, the decimal number 19 has the binary con-
figuration 10011,, since 19 = 16+2+1. In the LGP-21, 19 at a q of 5
would appear as

19
| e |

010011/\00000000000000000000000000

or at a q of 21 as:
19

0000000000000000010011/\0000000000

When a number is shifted to the right, the vacated positions on the left side are
filled with the original contents of bit position zero, because this is an arithme-
tic multiply. An example of a positive number shifted right is shown above; for
a negative number:

+1.25

+1.25@ 1 0~00000000000000000000000OQ0O0O0O00OO00O
-1.25

-1.25@1 10110000000000000000000000000000

-1.25
-1.25 @9 11111111101100000000000000000000

The programmer must know where the binary point is in the result of each
arithmetic operation. The rules involved are simple:

1. Addition and Subtraction

The q's of the operands must be the same, and the q of the result is the
same as that of the operands.

Examples:
6@q=9 15@q =20
+4@q=9 9@q=20
10@q=9 6@q-=20

Overflow may occur in which case the computer continues after setting
an overflow flag which may be tested by the -Z command.

2. Multiplication

The q of the product equals the sum of the q's of the two operands.

Examples:
5@q=5 22@q=26
x3@q=2 x1@q= 3
15@q="17 22@q=29

The M instruction can be used to shift right. To accomplish this, multiply
the number to be shifted by 1 at a q = S, where S is the number of places to
shift. In the second example above, 22 is shifted right 3 places because it
is multiplied by 1 at a q = 3. The product extends to bit position 30 and is
not rounded.

In M multiplication, no overflow can occur. Bits shifted out of the Accu-
mulator are lost.

The N instruction can be used to shift left. To N-multiply by 1 @ q = n
shifts the number in the Accumulator left 31 - n places without the possi-
bility of overflow, although bits may be shifted out of the Accumulator on
the left.

DECIMAL CONSTANTS
IN A PROGRAM

3. Division

The q of the quotient is equal to the q of the dividend minus the q of the
divisor. In division it is necessary to determine what q is required for
the dividend to insure that the developed q of the quotient will be sufficient
to hold the largest expected result. Overflow will occur if the scale of
the quotient is not sufficient to cover the answer that is developed.

Examples:

(24@100+(2@4=12@6
(19@17)+(1@2)=19@ 15

The D instruction can be used to shift left. To accomplish this, divide the
number to be shifted left by 1 at a q = S, where S is the number of binary
places to shift. In the second example above, 19 is shifted left 2 places
because it is divided by 1 at a q of 2. The quotient is rounded at bit posi-
tion 30. It is possible to cause overflow when shifting by means of a D
instruction.

Since the LGP-21 handles all data and internal computations in binary form,
it is desirable to have a program which will read decimally-coded programs,
convert them to binary form, and store them in designated locations. Such a
program is called a program input routine and is provided to all LGP-21
users.

An LGP-21 program input routine does not accept constants entered in decimal
format. They must be entered as instructions or hexadecimal words. For
example, 1 at a q of 29 can be conveniently written as the instruction 20001,
and 18 at a q of 23 as 21800. Constants which cannot be represented in this way
must be written as hexadecimal words (leading zeros may be omitted). For
example, 8.75 at a q of 4 must be written as 46000000 on the coding sheet.

Example problem: Calculate 5x2 + 3x - 7.75 = y and store y in 6300 at a q of 10.
The value x is less than 10 and is stored in 6301 at a q of 4. The constants
5@3, 1@1,1@4, 7.75 € 10, and 3 € 2 will be in the program.

INPOT CODES Eloc‘"o“ oren;:gr:]ui‘;gl:ss é. OF ADDRESS NOTES
T — ==
N S :
Lk J_{ 1 1 1 1 11 1 1 1 1 I
A 0,00,0] , , ,8,63.0,1]" Bring x@.4
iy 0,0,0,1] , | ,M;G,3,0,I ‘ Multiply by x 4,2 @8
AP 0,002} ,, Mmoo, 12| MulliptybyE:Fs;Slzoll
N 0,00,3| , , ,00,0,1,3}' shift left 1; {5x2@ 10
Ly 0,0,0,4| , , ,5,0,0,1,4]"* Subtract 7.7#@10,-5:2~7.75e/|o
Ly 0,00,5 , , H,6,300]|" Hold 522 - 715@10
N 0,0,0,6| , , ,B;£,3,0,| ¢ Bring x@ 4
ey 0,007| ,, mM001, 5] Multiply by 3@2; 3x€6
R 0,00,8/,, ,M00,1,6]" Shift_Right 4; 3x£.10
M 0,009 , , ,46,3,00]|" Add 5x2 77B@10;5C -7.75 + 3x@I10
P 0,0,1,0| , , ,H,6,3,0,0 ‘ Store result
g 00,4, ,,,20000}" Halt
N 0,0,1,2/5,0,0,0,0,0,0,0]" 5@3 in h:iiuec.mal
i i iy 0,0,1,3(4,0,0,0,0,0,00]" 1©1 in hexddecimal
A g oy 0,0,1,4|0,0w,8,0,00,0|’ 7.75 @ 10 in| hexadecimal
Lo s g 4wy 0,0,1,5/6,00,0,0,0,0,0]" 3&2inh
Py oy 0,0,1,6 ,a,o,o;o.o,o,o ! 1@4 in

* On the coding sheet, hexadecimal words must be preceded by a Program Input
Code (see Figure 3.1) as required by whatever program input routine is being
used. Since specific programs are not discussed in this manual, no input codes
are shown in the above coding example.

5-3

THE M AND N The N instruction multiplies the contents of the Accumulator by the contents

INSTRUCTION of location m and leaves the least significant half of the result in the Accumu-
lator. The M instruction also causes a multiply operation, but in this case
the most significant half of the product is retained.

Multiplying two 30 bit numbers (plus sign) results in a 60 bit product (plus
sign), which is in the Extended Accumulator (Figure 5.1). After an M instruc-
tion the Accumulator retains the sign and the 30 most significant bits of this
product. The remaining bit in the far right of the Accumulator is the spacer
bit which is always zero. After using the N instruction for multiplication, the
31st bit of the 60 bit product is in bit position zero of the Accumulator. Bit
positions 30 and 31 of the Accumulator are always zero after an N multiply.

AT

Result From N = I l I
1 34

I | | || II O|—€—Result From M
23 7

T

FIGURE 5.1 Extended Accumulator

(Bit position zero of the Accumulator, after N, has no significance as a sign
bit, unless the full 62 bit (plus sign) product contains all O's or all I's up to
and including position zero of the result left in the Accumulator.

When an N-multiply instruction is used, the q of the result equals the q of the
multiplicand plus the q of the multiplier, minus 31: (x @ 22) x (y @ 14) - 31 =
xy @ 5. Examples of multiplication with the N instruction:

(19@20) x (1 €28) =19 @ 17
(120 @ 30) x (10 @ 31) = 1200 @ 30

The first example above demonstrates that N can be used for a left shift of S
places by N-multiplying the number to be shifted by 1 at a q of 31 - S. To de-
termine whether to shift left by N-multiplying or by dividing, the following
general rule should be used:

If the word to be shifted represents a binarized number and overflow
is possible, divide. This allows for overflow detection, with the -Z
instruction, which will be explained later.

If the word has a logical meaning and overflow is possible, and if, in
effect, a logical shift rather than an arithmetic division is desired,
use N.

If no overflow is likely to occur, either D or N can be used to
shift left.

The second example above demonstrates that the N instruction can be used to
obtain the product at the same q as the multiplicand in the Accumulator, if the
multiplier is at a q of 31. However, only even numbers can be held at a q of
31 because position 31-the spacer bit-will be 0.

VARIATIONS OF THE The Z instruction acts as a Halt, Sense Overflow, Sense Branch Switch, or
Z INSTRUCTION No-operation.

When the address portion of a positive Z instruction is 0000 or 0100, the in-
struction is interpreted as a Halt. The computer stops in Phase 1 of the in-
struction following the 20000. The I register will contain the 20000, and the
Counter will contain the address of the next instruction. If the track portion
of the address is 02 or 03, the Z instruction is treated as a No-operation.
That is, the instruction is brought into the I register but is not executed. The
Counter is incremented, as usual, and the instruction following the Z is
executed normally.

The negative Z instruction is interpreted as a test for overflow. The overflow
indicator bit is recorded in the sign position (bit position zero) of the Counter
Register. A "1" bit is recorded (i. e. , overflow indicator ON) when overflow
occurs. A "0" bit (indicator OFF) signifies that no overflow has occurred.

If the overflow bit (not to be confused with position zerv of the Z instruction)
is ON, the computer turns it OFF and executes the instruction immediately
following the -Z; if the overflow bit is OFF, the instruction following the -Z
is treated as a No-operation, after which the second instruction following the
-Z is executed in the normal manner.

A negative Z instruction is programmed as 800Zn, which results in a 1 bit being
placed in position zero of the binary instruction word in memory. This instruc-
tion is called the "eight hundred Z" or "minus Z' instruction.

Example of testing for overflow: If the contents of 6308 plus the contents of
6311 results in overflow, go to 0325 for the next instruction. Otherwise, go to
0236.

PROGRAM] INSTRUCTION o| conrents
INPUT CODES 55| LOCATION [oreRaTION] ADDRESS | 5| OF ADDRESS NOTES

L
1 1 1 L 1 1 1 ’

)

4

131 ; 1 1 11 bl : 11 1
T N 1,5,2,0 i ,B=Gl3,0‘3 ’ Bring (6308)
P S T SR W 1,5,2,1 L |A{6|3||1| B Add (63]1)
I 1,5,2,2 BIOLOJ+042J0,O ¢ Test for|Overflow
MR SR 1,5,2,3} , , ;v,0,3,2,5 . Go 1o 035 if Overflow ON.
O S TR U T N 1,5,2,4{ , , U023 6|’ Go to 0336 it Overflow OFF.

T L}

In the example above, the track address 02 or 03 should be used in the -Z in-
struction because:

1. If 00 or O1 is used, the computer will halt after turning off overflow.
A manual depression of the START switch would then be required to
send the computer to Location 1523 for the next instruction. At this
time the U0325 would be treated as a No-operation or executed as a
branch instruction, depending upon the result of the test.

2. If a track address of 04 or greater is used, the instruction becomes
a Sense Overflow and Branch Switch instruction, as explained below.

There are four Branch Switches on the computer console, labeled BS-4, BS-8,
BS-16, and BS-32. These switches, which can be manually positioned ON or
OFF, operate in conjunction with the track portion of the Z instruction. The
computer will test the setting of the Branch Switch indicated by the track add-
ress of the Z instruction.

If the Branch Switch is ON, the computer will execute the next instruction in
sequence; if the Branch Switch is OFF, the next instruction is treated as a No-
operation, and the one following it is executed. For example, if the instruction
is 20800 and BS-8 is ON, the instruction following the Z is executed. If BS-8
is OFF, the instruction following the Z is treated as a No-operation, and the
one following that is executed normally. Several Branch Switches may be
tested with one Z instruction by making the track address equal to the sum of

5-5

the numbers of the switches. For example, 22800 will cause the computer to
test BS-16, BS-8, and BS-4. If all the switches are ON, the next instruction
will be executed; if any switch is OFF, the next instruction will be treated as
a No-operation.

The Sense Overflow and Sense Branch Switch can be combined (-Z, plus track
portion which specifies a Branch Switch). In this case, the next instruction will
be executed if the overflow bit and all referenced Branch Switches are ON. If
any one of these is OFF, the next instruction will be treated as a No-operation.

This discussion can be summarized as follows:

Instruction Interpretation
Z0000 Halt
Z0100 }
20200 No-operation
20300]

(20400 through 26000 Sense Branch Switches; skip on no match.

-20000 Sense Overflow and halt.

-Z0100]

- 20200 Sense Overflow only; skip on no overflow.
-20300]

- 20400 through - 26000 Sense Overflow and Branch Switches

TRANSFER CONTROL On the computer console is a switch labeled "TC" (Transfer Control), which can
SWITCH AND THE be manually positioned to ON or OFF. This switch operates in conjunction with
T INSTRUCTION the negative T instruction, programmed 800T, which results in a "1'" bit in

position zero of the T instruction. This instruction is referred to as the "eight
hundred T' or "minus T" instruction. When a -T instruction is executed, a
transfer to m will occur to obtain the next instruction if the Transfer Control
switch is ON or the Accumulator contains a negative word. If the Transfer Con-
trol switch is OFF, the -T instruction will operate normally; that is, a transfer
to m will occur if the Accumulator contains a negative word. Therefore, if this
instruction is to be used for testing the position of the Transfer Control switch
only, the Accumulator must contain a positive word at the time the instruction ‘is
executed.

THE E INSTRUCTION The Extract instruction allows “masking” part of the word in the Accumulator,
so that only the desired portion is retained. The masked out portion of the word
is set to binary zeros; the word in location m is called the mask. Where the
mask contains O's, the corresponding Accumulator bits are set to O's; where the
mask contains I's, the corresponding Accumulator bits are left unchanged.

5-6

1

Examples: Assuming that the initial contents of the Accumulator and the contents
of 2315 are as shown and that the computer executes an E2315, these would be
the results:

First Example
Contents of 2315 (the Mask) 00000000000000001111111111111110
Initial contents of Acc. 00110110101011000101000011101100

Final contents of Acc. 00000000000000000101000011101100

Second Example

Contents of 2315 (the Mask) 11110000111100001111000011110000
Initial contents of Acc. 01101001000100000000111111110100
Final contents of Acc. 01100000000100000000000011110000

This instruction enables the programmer to "pack" and "unpack" computer words
which contain more than one field of data.

Coding example: Location 0523 contains rate of pay in pennies at a q of 15 and
hours worked at a q of 30. Compute gross pay (rate x hours) in pennies and store
the result in 0563 at a q of 15.

INPUT CODES g LOCATION OPERAI':JIE)T:IUT;S;SS é OF ADDRESS NOTES
1

PR S S :

1 1 1 { 1 1 1 1 1 1 W } 1 1 1
e 0,0,0,0] |, .B=0.5.2.3 ’ Bring word from 0523
L 0,00, , | lE=0L0.0,9 ‘ Keep hpurs worked

Lo o 4 b 1 0,002/ , , ,H6,300]| Save hpurs worked in temporary
TR R L Ly ‘ storage

P SR 0,0,0,3 L lB=0,5,2,3 ’ Bring word from 0523
L 0,0,0,4| , , IE%O,OQJO i Keep rate of pay @ 15
e e 1 v ouy 0005 ,, M00,1,1] Shift right 1 to q =16
Loy 0,00,6} , , ,N6,3,0,0 ‘ (Rate of pay@16)x (hours @ 30) =
Ly Foa g L ! poy @, 46 - 31 =15
PR 0,007(, , ‘H! 5,6,3]° Store gross pay in 0563 @ q =15
T W R SO T M 0,0,0,8 ., 4 12,00,0,0(" Halt

ik l, o 0,0,0,9 T :w,w,wlo f Hexaderimal representation of mask
I ; L1 0,0,1,0 W,W,WIW;O.OIO,O ! Hexadecimal representation of mask
B S S S W 0,0,1,1 4,0L010=010,0,0 ! 1@q=|l.

’
1 1 1 : 1 1 1 1 1 1 1 1 1 % 1 - e

Notice that the instruction sequence B0523, E0009 yields exactly the same re-
sult as B0009, E0523. The mask can be in the Accumulator, and the word
which is to be edited can be “extracted” from it, if this is more convenient.

57

———————

INPUT/OUTPUT

INPUT INFORMATION

CHARACTER REPRE-
SENTATION ON TAPE

The standard input/output device for the LGP-21 is the Model 121 Tape Type-
writer unit. It consists of an electric typewriter, a paper-tape reader, and a
paper-tape punch. The reader and punch cannot be used separately from the
typewriter, but the typewriter may be used alone. That is, the typewriter is
normally dependent upon the computer for electrical power, and therefore can
be used only when the computer is ON. However, an extra cable is provided for
connecting the typewriter to a standard outlet instead of to the computer. While
this connection is used, the typewriter functions as an off-line device.

The typewriter has a standard keyboard which has been modified so that it can
use the LGP-21 codes shown in Appendix C. Keys which represent commands
are of a different color than the others. There is one additional key: the
CONDITIONAL STOP CODE ('). It produces a code on tape which has two
functions: to stop the paper-tape reader, and to send the "start" signal to the
computer. In addition to the keys, a number of levers are part of the tape-
typewriter unit. Their functions are described in Appendix B.

While optional input/output equipment is also available which provides higher
operating speeds, if desired, the following discussion will be restricted to the
standard unit entirely.

Information may be input to the computer from the typewriter keyboard (the
manual mode of entering information), or it may be read from tape. In either
case, a typed or "hard" copy of the information is produced. Similarly, infor-
mation may be output from the computer to the typewriter, which will produce
a hard copy and, if desired, a punched tape.

When information is input to the computer, it enters the low end (i. e. , bit
position 31) of the Accumulator in binary-coded decimal format. Each new
character moves the preceding character to the left until the Accumulator is
filled. If too many characters are entered, the left-most characters in the
Accumulator will be lost. This, however, does not cause overflow. Before
studying how the characters enter the Accumulator, their representation on
punched tape shall be discussed.

When a typewriter character is typed while the PUNCH ON lever on the type-
writer is depressed, a pattern of holes-unique for each character-is punched
across the six positions or channels of the tape.

For instance, if the characters 7 and M are punched consecutively, the pattern
of holes on the tape would appear as shown in Figure 6.1.

6-1

[6[1T2TT3T4]5] >— Channel Number

Direction of °
Tape Motion

Guide Edge

Sprocket Holes

FIGURE 6.1 Character Representation on Tape

All the holes for a given character are punched simultaneously. Note that channel
6 is located next to channel 1.

Channels 5 and 6, on opposite edges of the tape, are called the zone channels; chan-
nels 1 through 4, the numeric channels. Thus the example in Figure 6.1 shows that
the tape codes for 7 and M differ only in their zoning. The numeral 7 is one of the
16 hexadecimal characters (0 through 9, F, G, J, K, Q, W); M is one of the 16 letters
which denote commands. The tape codes for all hexadecimal characters and all
commands are given in the following table, Figure 6.2. Holes are presented by
1's; unpunched channels by 0's.

Tape Code. Decimal Tape Code
Character 612345 Value 612345 Character
0 000001 0 100000 z
1 000011 1 100010 B
2 000101 2 100100 Y
3 000111 3 100110 R
4 001001 4 101000 I
5 001011 5 101010 D
6 001101 6 101100 N
7 001111 7 101110 M
8 010001 8 110000 P
9 010011 9 110010 E
F 010101 ‘10 110100 U
G 010111 11 110110 T
J 011001 12 111000 H
K 011011 13 111010 C
Q 011101 14 111100 A
W 011111 15 111110 S

FIGURE 6.2 List of Tape Codes

6-2

THE INPUT
INSTRUCTION

The second column of this table shows that the hexadecimal characters have
zones O----1. Column 4 shows that the letters used for commands have zones
1----O. Column 3 gives the decimal value of the binary number formed by the
holes in the numeric channels for both types of characters. A look at K and C
in this table shows that both have numeric punches 1101 (8 + 4 + 1 = 7); they can
be distinguished only by their zones.

The remaining characters have either zone O----O or l----1. While sixteen
codes are possible with each zone, only those actually used with the LGP-21
typewriter are listed in Figure 6.3.

Tape Code Decimal Tape Code

Character 612345 Value 612345 Character
(Blank Tape) 000000 0 100001 Space
Lower Case 000010 100011 _
Upper Case 000100 2 100101 + =
Color Shift 000110 3 100111
Carriage Return 001000 4 101001 / ?
Back Space 001010 5 101011 .1
Tabulate 001100 6 101101 o [

7 101111 \Y%
Cond. Stop 010000 8 110001 0

9 110011 X

15 111111 Delete

FIGURE 6.3 LGP-21 Special Character Codes

When information is entered into the Accumulator, the 4 numeric punch charac-
ters always enter, but the zone punches enter only if the programmer specifies
the 6-bit mode of input. The bits corresponding to the six channels enter in
1-2-3-4-5-6 order, not 6-1-2-3-4-5 as they appear on tape. The 4- or B-bit
mode is optional for every character, but the convention for the LGP-21 is to
enter decimal and hexadecimal data in 4-bit mode, and alphanumeric data in
B-bit mode.

The I instruction determines the mode of input as follows: a negative Input in-
struction (8001) selects 4-bit mode; a positive Input instruction (I) selects 6-bit
mode. The track address of the Input instruction determines what input device
will be used: track address 00 selects the Model 141 Tape Reader; track add-
ress 02, the Model 121 Typewriter. The sector portion of the address has no

6-3

6-4

effect on the Input instruction. When the typewriter is selected for input, in-
formation may be typed from the keyboard or read from tape, depending on
how the MANUAL INPUT lever is positioned (see Appendix B).

Up to 31 input devices may be connected to a single LGP-21 system. Each de-
vice has an individual track address which is assigned at the time of its installa-
tion.

Examples of Input Instructions:

Instruction Explanation
10200 B-bit input from Typewriter
10000 6-bit input from 141 Reader
80010200 4-bit input from Typewriter
80010000 4-bit input from 141 Reader
Examples:

1. Illustrated below is the contents of the Accumulator before and after read-
ing the decimal digits 125" in 4-bit mode. (Note: The apostrophe repre-
sents the stop code which must be present to inform the reader when to sto
reading, but it does not enter the Accumulator.) The X's represent the
original bits in the accumulator before input (normally, all zeros).

before input [EEREEEEEEEEEEEEEXXEXEXXEXXX XXX

1
after input EEEERRXXXXXXX[X]X]X]0]0] 0[] O] O] O] I[O[OJI[O[O[1] O] T
i 2 5

The 125 enters in binary-coded decimal in the twelve right-most positions
of the Accumulator after causing its original contents to shift left in 4-bit
increments to accomodate each of the incoming characters. In addition,
four binary zeros have been inserted between the first character read and
the pre-input contents of the Accumulator.

2. Illustrated below is the contents of the Accumulator after reading the alpha
numeric characters LGP' in 6-bit mode.

XXXXXXXX000000000110101110100001

L G P

The original contents of the Accumulator was shifted left, and the 6-bit
code for each of the incoming characters was inserted in the far right
positions. Also, six binary zeros have been inserted between the first
character read and the pre-input contents of the Accumulator.

In both examples a "1" is in bit position 31. This can occur only immediately
following input. If the word is stored in memory, the 1 bit in position 31 in
memory will be lost (that is, set to 0). Significance in that bit position can only
be saved by shifting the contents of the Accumulator left at least 1 place (using
either the N, D, or the shift instruction explained in the next chapter) before
the value is stored in memory.

Describing the input instruction in more general terms, the computer performs
the following operations for each input instruction:

1. It shifts the contents of the Accumulator left 4 or 6 places, depending
on the specified mode of input, inserting zeros in the vacated positions.

2. It reads a character from the selected device and holds the B-bit code
for this character in a 6-bit register.

3. If the character in the 6-bit register is a stop code (binary code
100000), reading terminates, and the computer proceeds to the in-
struction following the input instruction. If a non-entering character
other than the stop code is in the register, the computer returns to
step (2); otherwise it goes to step (4).

4. It shifts the contents of the Accumulator left 4 or 6 places and inserts
the 4-bit or 6-bit code for the character read into the low order 4- or
6-bit positions. Then it returns to step (2) above.

NON-ENTERING When input is through the 121 Typewriter, the following conditions are true:
CHARACTERS
1. In the 4-bit mode all bit combinations enter the Accumulator except
the O----O zone combinations, Delete, and those combinations not
specifically listed in Figure 6.3.

2. In the B-bit mode only legal codes enter the Accumulator.
When input is through the 141 Reader, these conditions are true:

1. In the 4-bit mode all bit combinations which have a "1" zone bit,
enter the Accumulator. Thus, tape codes such as 110101 and
111101 are legal input codes for the 141 Reader but can not be
read on the 121 Typewriter.

2. In the 6-bit mode the only bit configurations which do not enter the
Accumulator are Delete and Conditional Stop.

THE PRINT The Print Instruction selects the output device to be used and the mode of output,

INSTRUCTION and causes one character to be recorded by the selected output device. A nega-
tive Print instruction (800P) selects the 4-bit mode of output; a positive Print
instruction (P), the 6-bit mode of output. Decimal and hexadecimal data are
output in 4-bit mode; alphanumeric data in 6-bit mode. The track address se-
lects the output device: 02 selects the Model 121 Typewriter, 06 selects the
Model 151 Tape Punch. The sector portion of the address has no effect on the
Print instruction. If 4-bit output is selected the upper 4 bits of the accumula-
tor are output through the selected device with zone bit 10 in channels 5 and 6.
If 6-bit output is selected, the upper six bits of the accumulator are output
through the selected device.

Examples of Print instructions:

Instruction Explanation

800P0200 Record via typewriter the character whose zone bits are
I----O and whose numeric bits are in positions 0 through
3 of the Accumulator (4-bit output).

800P0600 Record via 151 Punch the character whose zone bits are

1----O and whose numeric bits are in positions 0 through
3 of the Accumulator (4-bit output).

6-5

THE SHIFT

INSTRUCTION

Instruction Explanation

P0O200 Record via typewriter the character whose 6-bit code is
in positions O through 5 of the Accumulator (6-bit output).

P0O600 Record via 151 Punch the character whose 6-bit code is
in positions 0 through 5 of the Accumulator (6-bit output).

If binary-coded decimal information in the computer is to be recorded in deci-
mal; the 800P instruction is used. It is also used to record information in
hexadecimal format, regardless of the internal representation of such informa-
tion. The P instruction is used to record alphanumeric data which is represent-
ed internally in this form.

The I instruction is available in two special forms which can be used to shift the
contents of the Accumulator. The negative form, 80016200 causes a 4-place
shift, the positive form, 16200, a 6-place shift. The bits which are shifted out
of the Accumulator at the extreme left are lost, while thevacated positions on
the right are filled with zeros. The track-address portion of the Shift instruc-
tion is 62; the sector portion has no effect on the instruction.

Instruction Explanation
80016200 Shift left 4
16200 Shift left 6

EXAMPLES OF OUTPUT 1. Location 1806 contains the 3-digit, binary-coded decimal number 125

OPERATIONS at a q of 30. Print this number, in decimal: via the typewriter.
PROGRAM 8 INSTRUCTION 8 CONTENTS
INPUT CODES 5 LOCATION OPERATION] ADDRESS| 5| OF ADDRESS N OTES
1 1 } 1 1 e 1 1 1 1 1 { L 1 1
Cap 0,00,0| , | ,Bil,alo,e . Bring 135@4q = 30
L 0,0,0,1 i lN{OIOIO,B ! Shift the 3 digits into positions Ol
Ly 0,0,0,2/8,00P,0,20,0 ’ Print "I’
L 0,0,0,3/8,0,0,1,6,2,0,0]"’ Shift lef) 4.
L 0,0,0,4/8,0,0,P,0,20,0(" Print 2"
i , P 0,0,0,5 s,o.o,r;slz.o,o . Shitt left 4
L 0,00,6(8,00,P,0,2,0,0 ’ Print "'g"
Ly 0007 ,,,20,00,0]" Halt
R 0,008 , , ,80,00,0 ! @ q=IR in hexadecimal
s
1 1 i 1 1 1 1 1 Il 1] ! 1 1 1

6-6

Location 2753 contains the number 724 in binary at a q of 30. Print
this number in decimal via the typewriter.

INPUT COBES g LOCATION opsn;:gr:r%g;;ss g OF ADDRESS NOTES

’
1 1 : i 1 1 1 1 1 1 = L L 1
T 0,0,0,0] , | .3{2.7.5.3 ’ Bring 724
L 0,0,0,1| , , ;0,00 1, 1|’ (724 @ 30)+ |(1000@ 27)= .724 £ 3
PR 0,0,0,2| , , .N;0,0.I.Z ’ (724@3) N-Multiplied by (10©31) =
Ly I B 7.24€3
R 0,0,0,318,0,0,P40,2,0,0 ’ Print 7"
PR 0,00,4} , , E0,0,1,3 4 Leaves .24&
Ly 0,005} , , ,N0,0,1,2 ’ (.24 € 3) N-|Muttiplied by (I0@31)=2483|
L1 0,0,0,6/8,0,0,P0,20,0 ’ Print_"2"
Ly 0007 ,, ,6001,3 ! Leaves .4 &]3
L 0,00,8(,, ,NO00OI,2]" (.4@3) N-Multiplied by (I0@31)=4.083 |
Ly 0,0,0,918,0,0,P,0,2,0,0]" Print "4"
L 00,v,0{ ,,,2,0,0,0,0 4 Halt
Ly 00,4, V} , ,, ;3,0,8,0 ’ 1000 & 27 [in hexadecimal
L 0,0, 1,21 , 4 o o F ’ 10€ 31 i1n hexadecimal
M 0,0,1,3 ,W,W,WJ'VLW,W,Q 4 Mask in hexpdecimal
1 1 5 A 1 1 1 1 1 1 1 : 1 1 1 ’
Record the contents of Location 5513 in hexadecimal on the 151 Punch.
PROGRAM INSTRUCTION

INPUT CODES

LOCATION

OPERATION|] ADDRESS

[
o
1%

L2

CONTENTS
OF ADDRESS NOTES

~ |sror

~

11

4 4+ 4 4

PO 1 0,0,0,0 L .B:5,5il 31" Bring the werd from 5513

VI W 0,0,0,1 |8 .0.0.P:O.G.0,0 ’ Record first Jhexadecimal choracter
Lt g i 0,0,0,2 8.0.0.[;6.2.0.0 * Shift left 4

M 0,0,0,3|8,0,0, F=0,6,0,0 ’ Record secoad hexadecimal character
O 0,0,0,4 8,0,01146,210,0 4 Shift left 4

T T W1 0,0,0,5|8,0,0,P,0,6,0,0("* Record third| hexadecimal charactler
Ly 0,0,0,6 8,0,0,126,2,0,0 4 Shift left 4

P S 0,0,0,7 8,0,0,P=0,6,0,0 ! Record fourtl] hexadecimal character
Ly 0,0,0,8|8,00,1,6,2,0,0 ‘ Shift_left 4

I 0,0,0,9 B,0,0,P!O {6,0,0]* Record fifth |nexadecimal character

T R R | 0,0,1,0[8,0,0,1,6,2,0,0]" Shift left 4

TS 0:0,1,1 B.0.0.P; 0,6,0,0(" Record sixth|hexadecimal character
T 0,0,1,2 810,0,1‘r6,2,0|0 ’ Shift left 4

TR 0,0,1,3 BLO,O,P: 0,6,0,0[" Record seventh hexadecimal character
R 0,0,1,4 s.o.o.l:sLaio.o ’ Shift left 4

i ; 5 0,0,1,5 B,0,0,P;O.G,0,0 . Record eighth hexadecimal character
L 0,0,1,6f ,, ,2z,0,00,0|’ Hait

i 1 = il A 1 i 1 L i 1 ; i 1 1 .

6-7

INPUT TO THE
COMPUTER

Manual input

6-8

4. Location 0555 contains the 5-character, alphanumeric word LGP21 at
a q of 29. Perform a carriage return and print this word via the type-

writer.
[
i, | 8] tocarion o HNCHER 91 cioNmess NoTES
T
N
! ’

1 1 1 : 1 1 1 1 1 1 1 1 ; 1 1 1
P W S S S 0,0,0,0 L .B=0.0.I 217 Bring 01000 into positions 0-5 of
IR SRR & g Ly i Accumylator
A O 0,0,0, 1| , , ,P,0,2,0,0}" Execule cardiage return
i i 2 ; L1 0,0,0,2{ , , ,8;015,5,5 ! Bring "he“ Igh ic word
T 0,0,0,3| , , lP=0.2,010 4 Print "L
N 0,00,4/ ,, ,1,6,2,0,0 « Shitt left 6
Ly 0,0,0,5{ , , ,P,0,20,0 ‘ Print_"G"
L 0,0,0,6] , | ,Ils,zLo,o ! Shift left 6
MR S 00,0,7{,, ,p0,2,0,0 ! Print "P"
PR S 0,0,0,8] , | ,1'!6,2,0,0 ! Shift left 6
s b b g oa s 0,009 , , P 0200|"’ Print 2"
L : ¢ g g 0,0,1,0 , ,I:S,Z,0,0 N Shift left 6
N 0,0, 1, 0| , .P,0,2,0,0[" Print "1"
L8 : L 0,0,1,2 4.0.0,0:010.0.0 - HALT — enteyed as a hexadecimol word.
Yo @ : L1 A 4 1 : N ’ Will also couse a carriage return, since
A : T i i g : P the 6-bit kode for this function (010000}

g g : T L L : AR is in bits Ojthrough 5 of this word. To get |
T : B i L1 g g g : Gp 4 this dual-purpose effect with an instruc-
i g : o i g o e : T tion whose|address is not 0000, the add~
PRI . Lo L1 e :)1 ! ress must e written in_hexadecimal.

In the above example, "LPG" will print in lower case, as no provision has been
made to change to upper case. The alphanumeric information could have speci-
fied upper case preceding the "L" and a change to lower case between the "P"
and 2", However, this would have resulted in seven alphanumeric characters,
requiring representation 'as two words in memory.

Information may be input to the computer manually or under program control.
Both methods will be discussed here.

If the typewriter and computer are ON and the Mode switch is positioned to
MANUAL INPUT, typing a character on the keyboard causes the bits represent-
ing channels 1 through 4 of the character’s tape code to appear in the last four
bit positions (28, 29, 30, and 31) of the Accumulator. As was pointed out in

the discussion of the Input instruction: the information-in binary-coded decimal
format-enters the low-order portion of the Accumulator, one character at a
time, and moves to the high-order portion as each additional character is enter-
ed. If more than eight characters are typed during such an input operation, only
the jast eight are preserved in the Accumulator, since it has only 32 bit posi-
tions. The same characters which enter the computer in response to an Input
instruction can also be entered manually (see “Non-entering Characters”).

Suppose that a punched tape, such as the one containing the codes for 7 and M
which was illustrated earlier, is placed in the typewriter-reader. With the
computer in Manual Input mode, depressing the START READ lever on the
typewriter activates the reader. This causes "7TM" to be printed and the four
principal bits of each character's tape code to enter the Accumulator, just as
if the characters had been typed by hand. Depressing the START READ lever
once causes automatic successive reading of the characters punched on tape.
Reading will continue until a stop code is read on the tape or until the STOP
READ lever or the START COMPUTE lever is depressed.

Notice that the form of input discussed here allows information to enter the Ac-
cumulator only; nothing is stored in memory and no instructions are executed.

Program-Controlled Input As has been shown, characters can be entered into the Accumulator from the
keyboard or from tape when the computer is in Manual Input mode. Input can
also be activated by programming. For this purpose, an Input instruction must
be stored in memory and executed during program operation.

This presupposes that some information is already stored in the computer, namely
an Input instruction. But even before such an instruction is in memory, there
must be a way to enter information into memory.

STORING INFORMATION In the following discussion, a number of computer switches will be mentioned

IN MEMORY which are instrumental in entering information into any desired memory locations.
Since the mechanical aspects of this process are of no particular concern within
the context of this chapter, no attempt is made to introduce the subject at this
point. A detailed discussion of the computer controls and their functions will be
found in Appendix A; a similar discussion of the input/output controls in Appendix

Input to Memory To enter 19 at a q of 21 into Location 2003, a C2003 instruction must first be

from Typewriter placed in the Instruction Register and executed. To do this, the MODE switch
is set to MANUAL INPUT, and C140J (the hexadecimal form of the decimal in-
struction C2003) is typed. Next the FILL CLEAR switch is depressed. This
copies the contents of the Accumulator (the C2003 instruction) into the Instruc-
tion Register and sets the Counter to zero. Then 00004500 is typed. This
places 19 at a q of 21 in the Accumulator. Now it only remains to execute the
instruction in the Instruction Register. To do this, the EXECUTE switch on the
computer must be depressed. However, this switch is not active when the com-
puter is in Manual Input mode. Therefore, to complete the operation, position
the MODE switch to ONE OPERATION and depress EXECUTE. The Clear in-
struction will be executed, and the number 19 at a q of 21 will be stored in
Location 2003. If other words are to be stored in other memory locations, the
MODE switch must first be positioned to MANUAL INPUT.

69

Input to Memory
from Tape

LGP-21 BOOTSTRAP

Returning to the problem of input initiated by programming, suppose that the se-
quence of instructions 10200, C2003, Z0000. is in memory. If 19 at a q of 21 is
to be entered into Location 2003 from tape, a tape punched 00004500" must be in
the typewriter-reader. When the execution of the sequence of instructions is in-
itiated, the reader will begin reading the tape almost immediately and will stop
when the stop code (') is sensed. A fraction of a second later the computer stops
on the ZOOO00 instruction, with 19 at a q of 21 in Location 2003 and zero in the Ac-
cumulator . The computer had been stopped momentarily by the 10200 instruction,
but the reading of the stop code restarted it automatically.

If no such sequence of instructions is in memory and the constant is to be stored
into Location 2003 without any typing, a tape punched C140J'00004J00' must be
put in the tape reader. To load this constant, the following steps are necessary:

1. Position the MODE switch to MANUAL INPUT.

2. Depress the START READ lever on the typewriter. (C140J enters the
Accumulator.)

3. Depress the FILL CLEAR switch on the computer. (C140J, the hexa-
decimal form of the instruction C2003, is copied into the Instruction
Register.)

4. Depress START READ on the typewriter. (00004J00 enters the Ac-
cumulator .)

5. Position the MODE switch to ONE OPERATION.

6. Depress the EXECUTE switch. (00004J00 is cleared into Location
2003.)

Once a pair of I, C instructions is stored in memory, the programmer can store

other words under program control. The manual operationof storing the original
instructions in memory is called a bootstrap procedure, and the sequence of in-
structions which is stored is called a bootstrap. A bootstrap consists of a set of
instructions which, when stored in memory: transfers control to itself in order

to input a hexadecimal fill sequence, which in turn loads a program. While there
are several ways of programming a bootstrap, the manual procedure remains the
same for all. The discussion in this manual describes the bootstrap which loads
Program Input 2 (program J1-10.1).

The bootstrap program consists of three instructions which are stored in Loca-
tions 0002, 0003, and 0004, and a fourth instruction which transfers control to
Location 0002. The hexadecimal fill sequence consists of eleven instructions,
stored in Track 63, and a twelfth instruction to transfer control to the beginning
of this sequence.

One reason for using a program input routine in the LGP-21 is to convert decimal
instructions to binary. Without such a routine, decimal instructions can not be
entered. Consequently, the bootstrap, hexadecimal fill sequence, and the pro-
gram input routines themselves must be written in hexadecimal. The following
discussion will explain the bootstrap, its function, and how it is loaded.

The basic bootstrap consists of three instructions, shown here in decimal notation,
to be loaded in Track 00.

PROGRAM S INSTRUCTION S| CoNTEnTs
INPUT CODES | 5| LOCATION [opemaTioN] ADDRESS _8 OF ADDRESS NOTES
: ’
LI T
1
L
1 i 1 = A A A 1 1 1 1 1 } 1 1 1
' A 1 ; 1 1 1 olololo 1 1 1 : A 1 1 4
ST 000t} 4 vy vy |’
e v, 0y, | |000,2800,1,0,2,0,0]"
R S 00,03 ,,,60005]"
e 0,0,0,4 8.0.0.1=012.0.0)
I N S P) 111 it :'l [‘

These instructions must be stored in the computer manually. Therefore, each
must be preceded by a Clear instruction which will enter the Instruction Regis-
ter and, when executed, will store a word in the appropriate memory location.
Finally, this set of instructions must be followed by an Unconditional Transfer
instruction which is executed but not stored in memory. Thus, it takes eight
instructions to actually store the bootstrap and transfer control to it. Figure 6-4,
below, lists these instructions in proper sequence. Column one contains the
decimal equivalent of each instruction; column two, the hexadecimal word as it
appears on tape; and column three, the designation of the switches which must

be activated, as well as the resultant action.

Decimal Hexadecimal
nstruction Word Console Switch and Interpretation

Turn computer and typewriter ON.
Position MODE switch to MANUAL INPUT.

Depress START READ. The following in-
struction enters the Accumulator.

coo02 000C0008' Depress FILL CLEAR. Places COOO02 in the
Instruction Register. Depress START READ.

-10200 80010200’ The instruction -10200 enters the Accumulator.
Position MODE switch to ONE OPERATION;
depress. EXECUTE. Clears -10200 into
Location 0002.

Position MODE switch to MANUAL INPUT.
Depress START READ to enter the following
instruction into the Accumulator.

coo03 000C000J’ Depress FILL CLEAR. Places COO0O03 in the
Instruction Register. Depress START READ.

coo05 000C0014" COO005 enters the Accumulator. Position MODE
switch to ONE OPERATION; depress EXECUTE
Clears COOO05 into Location 0003.

Position MODE switch to MANUAL INPUT. De-
press START READ to enter the following in-
struction into the Accumulator.

coo04 000C0010" Depress FILL CLEAR. Places COO04 in the
Instruction Register. Depress START READ.

-10200 80010200 -10200 enters the Accumulator. Position MODE
switch to ONE OPERATION; depress EXECUTE
Clears -10200 into Location 0004.

Position MODE switch to MANUAL INPUT.
Depress START READ to enter the following
instruction into the Accumulator.

U002 000U0008' Depress FILL CLEAR. Places UOOO02 in the
Instruction Register. Depress START READ.

20000 00020000’ Z0000 enters the Accumulator. Position MODE
switch to NORMAL.

FIGURE 6.4 Basic Bootstrap

At this point the Counter Register contains the address 0002. This indicates that,
when the START switch is depressed, the computer will execute instructions be-
ginning in 0002. After the START switch is depressed, the hexadecimal fill se-
quence is loaded in Track 63, and control is transferred to it.

The decimal coding for the hexadecimal fill sequence is given in Figure 6.5,
below:

Location Command Address
6300 8001 0200
6301 GWC 0000
6302 U 6308
6308 B 6301

(6309 S 6317
6310 T 6313
6311 C 6301
6312 U 6300
6313 zZ 0000
6314 U 0000
6317 W WWWJ

FIGURE 6.5 Decimal Coding for Hexadecimal Fill Sequence

6-12

The hexadecimal words which appear on the tape,together with their decimal
equivalents, are listed in Figure 6.6. The bootstrap will store this sequence

in memory and transfer control to it. The sequence of events is as follows:

The first of each pair of instructions (except the last pair) is a Clear instruc-
tion. Thus, the instruction in Location 0002 reads it into the Accumulator.
Then the instruction in 0003 places the Clear instruction into Location 0005.
Next, the instruction in 0004 reads into the Accumulator the instruction which is
actually to be stored. The instruction in Location 0005 stores the contents of the
Accumulator into the proper location. Finally, the instruction in 0006 transfers
control back to 0002 to repeat the process for the next pair of instructions.

Decimal Equivalent Hexadecimal Word
C0006 000C0018"
10002 00008’
C6300 C3wo0'

80010200 80010200°'
C6301 C3wo04'

191coo00 GWC0000
C6302 C3wo08!
U6308 U3w20'
C6308 C3w20!'
B6301 B3w04'
C6309 C3w24'
S6317 S3w44!'
C6310 c3was'
T6313 T3W34'
C6311 c3waJ’
C6301 C3wo04'
C6312 C3wW30!'
U6300 U3woo'’
C6313 C3wW34!
20000
C6314 C3was’'
U0000 U0000'
C6317 C3w44'

WWWWJ WWWWJ'
U6300 u3woo'
20000

FIGURE 6.6 Hexadecimal Fill Sequence

Notice the last pair of instructions. The U3SWO00 is read into the Accumulator
by the instruction in 0002; then the instruction in 0003 places it in Location 0005.
The instruction in 0004 reads a zero (conditional stop code). The instruction in
0005 (U6300) then transfers control to 6300, and Program Input 2 is loadedinto
Tracks 00, 01, and 02.

6-13

PROGRAM TAPE PREPARATION

NN NN AN AN AN A NN AN A AN AN AN AN AN NN NN N AR NN NN AN AN AN N AN AN AN NN AN NN NN AN NN Y

TAPE PREPARATION

When a program tape is prepared from a coding sheet (see Figure 3.1) only the
information in the “Program Input Codes” and “Instruction” columns and the
appropriate stop codes are punched. The information in the “Location, "
"Contents of Address, "' and ""Notes" columns is not punched as part of a program
tape.

The procedure for punching a program tape is as follows:

1. Turn the typewriter POWER switch ON.
2. Depress the POWER switch on the computer console.

3. Position the Mode switch to MANUAL INPUT to protect the memory
from accidental recording.

4. Depress PUNCH ON.

5. Hold the TAPE FEED lever down long enough to produce a few
inches of tape with sprocket holes (a leader).

6. The first punch on every tape should be a Carriage Return code,
so that, when the tape is read, information will not start printing
in the middle of a line.

7. Program information is entered in this sequence:

a. Type the entries in the “Program Input Codes' column. There
are normally two, each followed by a Conditional Stop Code ('),
before the first instruction is encountered. A carriage return
is indicated on the coding sheet following the second input code.
If there is a further entry in this column, preceding the first
“Instruction” on the same line, it is punched next and again
followed by a stop code. A stop code is not punched if there is
no "Program Input Codes" entry on this line.

b. Punch the first entry in the "Instruction’ column, and follow it
with a stop code.

c. Continue punching information from the “Program Input Codes”
and ‘Instruction” columns as encountered in left-to-right order.
If a line is left blank in this sequence, only a stop code is punched.

There are a number of general rules for punching the above information which,
briefly, are as follows:

(1) Leading zeros need not be punched. For example, the hexa-
decimal word 00013W8J' can be punched without the leading
zeros as 13W8J'. (However, the instruction T0016 is punch-
ed as TOO16, since no leading zeros precede the "T".)

(2) Brackets are considered as containing zeros unless other-
wise indicated. That is, for B[. . . .]" = we must
punch B0000'. In the exceptional case where an entire
word is bracketed which consists entirely of zeros, that is
[1'= [00000000]‘, only the stop code need be punched.
In all other cases, zeros must be punched to assure that data
appears in the proper positions.

(3) All characters may be punched in lower case. (In this manual
capital letters are used to indicate operations. This is merely
for ease of identification.) In printout, B0627' will appear as
b0627 ' .

(4) Carriage returns, color shifts, back spaces, upper case,
lower case, and sections of blank tape (tape feeds) may be
punched as desired and will not affect the input operation. On
the coding sheet, a carriage return is indicated after every
fourth word.

(5) A heading may precede a punched program to identify the tape.
It may contain any characters except stop codes. As the tape
is read during input through the typewriter, the heading will
print but will not affect the input operation.

8. After the last instruction in the program has been punched, depressthe

TAPE FEED lever and allow a few inches of tape to pass through the
punch to produce a trailer. Tear off the tape.

9. Each tape should be verified in the following manner, after it is
punched:

a. Place the tape in the reader.

b. Raise the PUNCH ON lever.

c. Depress the CONDITIONAL STOP lever.

d. Depress START READ.

As the tape passes through the reader, a typed copy is produced.
The reader will not stop at stop codes, but these codes will appear
as apostrophes in the hard copy. This copy may then be checked

against the coding sheets. If errors are found, they should be cor-
rected before the program is stored in memory.

CORRECTION OF ERRORS Errors on punched tape may be corrected in various ways, depending upon the

7-2

type of error and when it is noticed. Three correction techniques are explained
here.

The easiest correction is for an error which is detected immediately after the
wrong key has been depressed. In this case, one need only

1. Turn the FEED KNOB on the left side of the punch back one notch.
2. Depress the CODE DELETE lever once.
3. Continue punching by depressing the proper key on the keyboard.

If a wrong key is depressed whose tape code is a portion of the desired combina-
tion, the operator need only back the tape until the incorrect character is under
the punch head, and overpunch it with the proper key. This method is particularly
useful when the error is detected after characters have been punched beyond the
error. However, it can only be used when the erroneous and correct tape codes
are related in the proper way. For example, a "6" can be overpunched on a "0",
"21, or "4", but not on "5" since the tape code for 5 has a punch in channel 4
while that for "6'" does not.

A more time-consuming correction method is to reproduce the tape up to the
error, punch the correct word, and then continue duplicating. The procedure
is as follows:

1. Place the original tape in the reader.

2. Depress the PUNCH ON lever.

3. Depress the TAPE FEED lever and produce a tape leader.

4. Depress the CONDITIONAL STOP lever.

5. Depress the START READ lever. The tape will be read and a duplicate
made. When the tape in the reader nears the error, raise CONDITION-

AL STOP. The reader will halt when it encounters a stop code. Depress
START READ each time another word is to be read.

6. When the last word prior to the error has been read and copied, raise
PUNCH ON.

7. Depress START READ once to read past the error.
8. Depress PUNCH ON. Type the correct word.

9. Depress CONDITIONAL STOP and START READ to continue duplicating
the original tape.

Appendix B contains a description of the basic input/output unit, including an explana-
tion of the function of each lever.

7-3

TIMING AND OPTIMIZATION

A TR 11 1 R TR R RN TR AR AR AN AN AN N NN AN AN AN NN NN NN AN NN NN A AN

TIMING

Optimization is a programming technique which provides access to data and in-
structions with a minimum of nonproductive searching time. When a program

is optimized for the LGP-21, the programmer utilizes the interlace arrange-
ment of sectors around the disc in a manner which will be explained after instruc-
tion timing is fully understood.

Generally, an instruction is said to be optimum if its four phases can be exe-
cuted before the disc turns past the location of the next instruction in sequence.
However, some instructions-such as multiply, divide, and input-require more
than 18 word-times for their operations.

Since timing is an integral part of optimization, the 4-phase instruction cycle—
already discussed in Chapter 3-is summarized here once more. Each phase
is measured in computer word-times. During Phases 1 and 3 the computer
searches for a specified sector and then activates the appropriate read/write
head. This may take from one to several word-times. Phase 2 always requires
one word-time; Phase 4 takes one word-time for all instructions except N-
multiply, M-multiply, and Divide, which require 63, 65, and 66 word-times
respectively.

The time required for the computer to read an instruction, execute it, and be
ready to read the next instruction depends on whether an instruction is optimum
or not. Figure 8.1 shows the various timing requirements:

Instruction Optimum Non-Optimum

Bring, Add, Subtract, Hold, 7.26 ms 58.11 ms
Clear, Extract, Set Return
Address, Store Address, and

Shift

N-multiply, M-multiply, 58.11 ms 108.96 ms

and Divide

Unconditional Transfer and 1.59 ms Each sector beyond
Conditional Transfer optimum adds .40ms
Sense 7.26 or

14.52

FIGURE Optimum Timing

An instruction can be optimum only if its operand is located within a certain
number of word-times. Figure 8.2 lists the range of optimum sectors for all
instructions which can be optimized.

Input Timing

Output Timing

OPTIMIZATION

Distance from Instruction Location
Instruction to Optimum Operand in Word-Times

Bring: Add, Subtract, Hold, 2 through 16
Clear, Extract, Set Return
Address, and Store Address

N-multiply 2 through 81
M-multiply 2 through 79
Divide 2 through 78
Unconditional Transfer and 4 or more if transfer is active

Conditional Transfer

Others always optimum

FIGURE 8.2 Range of Optimum Sectors

An input instruction is held in Phase 3 of its cycle until a start signal is received
from the input device. Therefore, the computer is not free to perform internal
calculations during an input operation. The total time for executing any input in-
struction consists of three word-times plus the Phase 1 search and the time re-
quired for reading or typing.

Because of the buffering system built into the LGP-21, an output operation will
not delay the computer unless the selected device is already in use. Thus, the
computer is free to perform other internal calculations while the information

is being output. During the time the output device is busy, the interlock forthat
device is turned ON. If that device is selected for output a second time while

its interlock is ON, the computer will delay execution of the second print until
the interlock is turned OFF. The interlock is turned OFF automatically when the
device is free. If, during the time an output device is busy, a second instruction
selects a different device for input or output, the second instruction will be exe-
cuted without delay if that device is not busy. Therefore, the operation of two

or more input/output devices can overlap in time. For example, if an output to
the tape typewriter is followed by an output to the 151 Tape Punch, the computer
will not delay on the second output instruction even though the typewriter is still
busy. If the first and second output instructions both select the typewriter, the
computer may delay on the second instruction until the typewriter is ready.

Print instructions must be 1/3 revolution apart for the 151 Tape Punch and not
more than 2 revolutions apart for the 121 Tape Typewriter, if these devices are
to operate at their rated speeds.

At the beginning of this manual, it was briefly mentioned that the physical charac-
teristics of the memory disc are disregarded for general programming purposes
as they vary from the 64 track/64 sectors concept used. Actually, the disc con-
sists of 32 tracks with 128 sectors each. These sectors are not numbered se-
quentially within a track although the pattern of numbering is the same for all
tracks. This system is based on an 18-word interlace pattern which positions
consecutive words 18 sectors apart-a feature which aids in optimizing of in-
structions which are executed in sequence.

Fortunately, the programmer does not have to memorize this complex pattern
in order to utilize optimizing for his programs. He can use the device illus-
trated in Figure 8.3, which will let him determine at a glance the optimum
sectors for the operand of any instruction.

The device-called the Optimum Address Locator-shows the interlace pattern
of the sectors on the memory disc. Each sector is represented by threedigits
of which the second and third represent an actual LGP-21 sector number. The
initial digit-which is either 0 or l-indicates whether the track used in con-
junction with the sector is even- or odd-numbered. A 0 indicates that the sec-
tor is on an even-numbered track; a 1 an odd-numbered track.

CURRENT
SECTOR

GENERAL PRECISION COMPUTER

—#= OPTIMUM ADDRESS

o
—% LOCATOR
[
’% COMMERCIAL CONPUTIR DIVISION
% @ GENERAL
/ PRECISION

e
INFORMATION SYSTINMS GROUP

FIGURE 8.3 Optimum Address Locator

To determine the optimum operand address for an instruction with the help of
the Optimum Address Locator, one must first locate on it the sector address
of the instruction.

Assuming a Hold instruction is in location 1400, sector 00 must be found on
the rotating center wheel of the device. Since track 14 is even-numbered, the
sector address 00 must be preceded by another 0. The next step is to center
000 above the “Current Sector” indicator (on the larger, outside wheel). Ad-
jacent to this indicator are five lines which delimit as many segments; each
segment being headed by the name (or names) of the LGP-21 command to
which it pertains. For example, the first segment applies to the T and U in-
structions; the fifth to N-Multiply.

8-3

8-4

The "H" for the Hold instruction can be found above the second segment. This
indicates that the optimum operand sectors for that command are contained
within the second segment area, namely between 057 and 008. In addition, all
other sectors within this range also yield an optimum operand address for the
Hold instruction above; namely, 057, 157, 050, 150, 043, 143, 036, 136, 029,
129, 022, 122, 015, 115 or 008.

If the Hold instruction had been in an odd-numbered location, say 1500, sector
00 on the center wheel would have to be preceded by a 1 to indicate the oddtrack
number. With 100 centered underneath the “Current Sector” indicator, and the
H command again located above the 2nd segment of the larger, outside wheel,
the first possible optimum operand address for the instruction would have been
157, and the last 108. In addition, all sectors listed between 157 and 108 would
be optimum for H1500.

At this point, one further general rule for using the Optimum Address Locator
should be adopted as good practice: that is, to never use the outer limits of

the optimum range for any instruction, if possible. The reasons for this rule
will be explained later in this chapter, when a few additional concepts have been
understood. Finally, the larger outside wheel of the Optimum Address Locator
provides the sector location in which the next instruction to be executed will be
found. This can be obtained from the black arrows which are placed, for clock-
wise reading, around the periphery of this disc. In other words, when the
Current Sector indicator for H 1400 is placed on 000, the black arrows show
that the next instruction would be located in 1401, etc.

Thus, by using the Optimum Address Locator, an operand address can be
chosen which permits execution of the Hold instruction before the next instruc-
tion (in Location 1401) passes the read head. On the other hand,if an H1658 is
in Location 1400, it is not an optimum instruction since sector 01 would have
passed the read head before the computer could complete the execution of
H1658; therefore, the disc would make a full revolution before Location 1401
could be read. Most instructions can be executed in approximately 1/7 of a
disc revolution when operand addresses are optimum. This constitutes a sig-
nificant saving in machine-time.

The U and T instructions are optimized somewhat differently than other in-
structions. If a U instruction is in sector 00 of an even-numbered track, the
fastest transfer will be to sector 50 on an even or odd track; if the U instruc-
tion is in sector 00 of an odd-numbered track (e.g. 0100), the fastest transfer
will be to Sector 50 on an odd-numbered track (e.g., 0150). Each subsequent
sector will add one word-time to the minimum transfer time. The search for
the sector of a T instruction occurs only during an actual transfer. If T1251
is given in Location 1700 and a transfer is not actually made, then the instruc-
tion in 1701 will be read as it passes the read head on that disc revolution.

For one more example of optimum programming, consider the following se-
quence of instructions.

PROGRAM S INSTRUCTION 6| CONTENTS

NPUT CODES 5| LOCATION [SPERATION] ADDRESS | &| OF ADDRESS NOTES
! s

1 1 1 1 b & 1 1
L ’

1 1 A & 1 1 1 1 1 L1 1 : L 1 B

1 1 L : 1 L L olololo 1 1 IB,}IIBI4A3 2

R 0001, A225.1]"

N S 0,002, , ,Cc 1943’
' v INCT

The instructions B1943, A2251, and Cl943 must be brought into the Instruction
Register before they can be executed. This can happen only when Locations 0000,
0001, and 0002 respectively are under the read head. If the read head is over
sector 00 and is placing the instruction B1943 in the Instruction Register, then,
if this instruction can be executed before the disc turns to sector 01, it will be
an optimum instruction. Figure 8.3 shows that sector 43 for an odd-numbered
track is between 00 and 01 and is within the optimum range for sector 00. The

same logic applies to the next instruction, A2251 at Location 0001. Sector 51
for an even-numbered track lies between sector 01 and sector 02 and is within
the optimum range for sector 01. Therefore, both these instructions are opti-
mum. However, the next instruction, Cl943 in Location 0002, will not be op-
timum because sector 43 does not lie between sectors 02 and 03.

Two further concepts need to be introduced now, to explain why optimum add-
resses should not be selected on the extreme outer limits of the optimum range,
whenever possible. The first pertains to the difference between relocatable
and non-relocatable programs. A non-relocatable program is coded for
storage in a particular area of memory and will not operate properly if stored
anywhere else. A relocatable program can be stored anywhere in memory. It
is normally written relative to Location 0000; that is, as if the first instruction
will be stored in Location 0000. In actual operation, it can then be stored by a
program input routine beginning with any location the programmer specifies.
(The program input routine description explains how this is done.)

The other new concept pertains to address modification. As a relocatable pro-
gram is being loaded, some operand addresses must be modified by the program
input routine for proper operation of the program. However, some addresses—
for example, those in Input and Print instructions-can not be changed because
they represent standard selection codes for certain input or output devices. The
same is true for sense Branch Switch instructions, since their address deter-
mines which Branch Switch is tested. Consequently, the program input routine
must be informed of any addresses which are not to be modified. This is done
by preceding such commands with an "X'":

XZ0800'
80X10200'
XA2001'
XR1011'
XU1000

NOTE: The X is recognized by the program input routine, but it is
not stored in memory.

Now it can be shown that, if a non-modifiable instruction has been written with
an extreme outer-limit optimum operand address, and the program is relocat-
ed by an odd number of tracks, the instruction would no longer be optimum.
For example, if the instruction

Location Instruction
0200 XA0457

is part of a relocatable program, and if the program is relocated upward by
three tracks, the instruction would appear as

Location Instruction
0500 XA0457

and would not be optimum. For this reason, optimum addresses should not
be chosen on the outer limits of the optimum range.

In closing, it might be mentioned that all LGP-21 subroutines programmed by
the General Precision Commercial Computer Division have been optimized to
effect savings in machine-time for the user. This is, however a more time-
consuming effort than straightforward programming. Consequently, if a pro-
grammer decides to optimize a program, he should first compare the possible
savings in machine-time with the added programming costs.

APPENDIX
LN N SRNE SE SE NSNS AR NS NN N NN NN N NN A N NN NS NS N SN N A S

COMPUTER CONTROL PANEL

The LGP-21 computer is operated through switches which are located on the
control panel. These switches are clearly identified by function or related
action. Figure A. 1 illustrates the control switches.

FIGURE A.1 LGP-21 Control Panel

MODE
This is a three-position toggle switch.

NORMAL - When the MODE switch is set to this position, the computer
executes instructions at high speed. When the START switch is depressed,
the execution of instructions will begin with the instruction whose address
is in the Counter.

ONE OPERATION - If the computer is operating in Normal mode and the
MODE switch is moved to ONE OPERATION, the computer will stop after
the next Phase 4, the execute phase. If the computer is stopped in One
Operation mode, depressing the START switch will start the computer
cycling through the instruction whose address is in the Counter Register,
and computation will stop after the execute phase for that instruction. The
EXECUTE switch is operative only in One Operation mode. Changing from
Manual Input to One Operation mode will deselect the tape typewriter.

MANUAL INPUT - This position sets the Accumulator to receive input.
It also selects the typewriter for 4-bit input, but does not deselect other
devices. If other devices are selected, the I/0 switch should be depress-
ed to deselect them or information may not enter correctly. When the
computer is in Manual Input mode, all typed characters, except non-
entering characters, enter the Accumulator. No instruction can be
executed in Manual Input mode, since the START switch is inoperative.

A-2

FILL CLEAR

FILL CLEAR is a momentary switch. In Manual Input mode it transfers the
contents of the Accumulator to the Instruction Register and resets the Counter
Register to zero; in One Operation mode it only sets the Counter Register to
zero. This switch is inoperative in Normal mode.

EXECUTE

This momentary switch causes the instruction inthe Instruction Register to be
executed. It is operative only in One Operation mode.

TRANSFERCONTROL

The TC switch can be set ON or OFF. This switch is used in conjunction with
the negative T (Conditional Transfer) command. A negative T instruction will
cause the computer to get the next instruction from the location designated by
the operand address if the TC switch is ON, or if the contents of the Accumu-
lator is negative. If the contents of the Accumulator is positive and the TC

switch is OFF, the computer will continue to the next instruction in sequence.

BRANCH SWITCHES

The four branch switches are labeled BS-32, BS-16, BS-8, and BS-4. Each
is a two-position switch which can be set ON or OFF. These switches are
used in conjunction with the Z (Sense and Transfer) command. A Z instruction
whose track-address corresponds to one or more of the branch switches will
cause the computer to skip the next instruction if any designated switches are
OFF, or to execute the next instruction if all designated switches are ON.

POWER

This switch turns power ON or OFF. Power for all units in the system is in
series with this switch. Any units previously set ON will have their power
turned ON as the switch is depressed. About thirty seconds after power is
turned ON, the POWER switch lights to indicate the machine has attained full
speed.

v

1/0

I/O is a momentary switchwhich clears the Accumulator and deselects all input/
output devices. If the computer is in Manual Input mode, depressing I/O will not
deselect the typewriter. The switch is lighted and operative during input and
output and when the computer is in Manual Input mode.

STOP

This indicator lamp lights immediately when the computer is turned ON and is
lit whenever the computer is not executing instructions.

START

START is a momentary switch which causes the computer to execute the in-

struction specified by the Counter Register. In Normal mode this will begin

the full-speed execution of instructions. In One Operation mode only one in-

struction will be executed. The switch is not operative in Manual Input mode.
The light beneath the switch is ON whenever the computer is operating.

In addition to the control panel switches, there are two toggle switches on the
back of the computer:

INTERLOCK

The LGP-21 has a circuit breaker to interrupt operation if the air-flow from
the fan becomes blocked. This interruption stops computer operation to pre-

vent overheating. Following such an operation, the condition that caused it
should be corrected; then the circuit may be reset by moving the INTERLOCK
switch from the up position down and up again. It should be noted that, de-
pending upon the operation in effect when the interruption occurred, informa-
tion stored in memory may have been destroyed and may have to be re-entered.

RECORD ENABLE

This switch may'be set ON or OFF. When it is ON, reading from and record-
ing in all sectors of all tracks may occur. When it is OFF, 1024 words—
specifically Tracks 00 through 15-are protected. That is, information may
be transferred from any word within this area to the Instruction Register (to
be executed as an instruction) or to the Accumulator (to be acted upon), but
no information can be recorded in any word in this area. This feature allows
the operator to lock a program in memory so that it cannot be destroyed in-
advertently.

A-3

INPUT/OUTPUT UNIT CONTROLS , APPENDIX

RS NI [st vty 5 st W B A s s I B e SR O SN NN ONNENENNENEN

The primary input/output for the LGP-21 is the Model 121 Tape Typewriter. In
addition to a standard typewriter keyboard, the unit has a paper-tape punch,
paper-tape reader, and various levers for controlling their operations.

FIGURE B.I Model 121 Tape Typewriter

POWER ON-OFF

This switch, in the lower right-hand corner adjacent to the keyboard, sets the
typewriter so that power will be turned ON or OFF when the, computer power
is ON. The carriage is interlocked and should not be moved when power is
OFF.

START COMP

When the computer has selected the typewriter for input, the START COMP
lever terminates input and allows the computer to proceed to the next instruc-
tion. The START COMP lever will stop the paper-tape reader whenever it is

running on-line or off-line. The functions of the START COMP and the STOP
READ levers are identical.

MANUAL INPUT
If this lever is down and the typewriter is selected for input, information can
be transmitted to the computer from the keyboard only. If this lever is raised,

information is transmitted from the tape reader when the typewriter is select-
ed for input.

B-1

CODE DELETE

Operative only when the PUNCH ON lever is depressed, this lever is used to
delete an error in the tape by punching holes in all six channels. One delete
code is punched each time this lever is depressed. However, by holding
down TAPE FEED and CODE DELETE at the same time, the operator can
produce a series of code deletes. If, while the punch is ON, a tape interlock
occurs because of a tight tape condition, depressing the CODE DELETE lever
will release the typewriter.

TAPE FEED

This lever feeds tape into the punch, which then punches only sprocket (feed)
holes. TAPE FEED is operative only when PUNCH ON is depressed.

MANUAL INPUT LIGHT

This light is on when the typewriter is selected for input to the computer and
the MANUAL INPUT lever is down.

PUNCH ON

The PUNCH ON lever activates the tape punch, allowing any character typed
from the keyboard or read from the tape reader to be punched. TAPE FEED
and CODE DELETE are operative only when PUNCH ON is depressed. Rais-
ing the lever turns the punch OFF.

STOP READ
This lever is used interchangeably with START COMP.
START READ

This lever starts the tape reader providing the MANUAL INPUT lever is UP;
otherwise, it turns ON the Manual Input light. Reading will continue until a
Conditional Stop code is read, providing the COND STOP lever is raised, or
until the STOP READ, START COMP, or MANUAL INPUT lever is depressed.

COND STOP

This lever, when depressed, allows the tape reader to read without being
stopped by the Conditional Stop codes. This lever must be raised during input
to the computer from the tape reader.

PAPER GUIDE

Located just to the rear of the platen, this guide should be adjusted horizon-
tally so that it touches the left edge of the paper form.

TAB STOP

Under the cover to which the paper guide is attached is the tab rack, num-
bered 8 through 136 in increments of 4. A tab stop is a metal positioner that
can be inserted in any notch along the tab rack. When the TAB key is de-
pressed, a Tab code read from tape, or a tab output from the computer, the
carriage will move to the next position containing a tab stop.

LEFT MARGIN STOP

In front of the tab rack is the margin rack, numbered O through 68 in incre-
ments of 4. The margin stop is the sliding assembly mounted on the margin
rack. To move this assembly, press down on its center and slide it along
the rack. The right end of the stop is the indicator. The setting of the mar-
gin stop determines the left margin position.

AUTOMATIC CARRIAGE RETURN

Behind the tab rack is a carriage return plate. An automatic carriage return
positioner can be placed anywhere along the plate. An automatic return occurs
when the carriage reaches this return positioner as the result of a tab jump;
i.e., because the Tab key is depressed, a Tab code is read from tape, or the
computer outputs a Tab code. If this positioner is reached as a result of
single-character steps, the typewriter may jam. This condition may be clear-
ed by striking the Carriage Return Key manually. However, any input or output
that occurred at the time of the jamming may be invalid.

PAPER SCALE
The paper scale is printed on the metal shieldin front of the platen. By view-

ing the paper scale through the type guide, one can determine the exact position
of the carriage and where characters will print.

TYPE GUIDE

This guide indicates the position of the carriage and the location where the
characters will print.

WRITING LINE

The bottom of the typed line will be exactly above the top edge of the writing
line finder. It is used to align a previously typed page in the platen for addi-
tional typing.

PAPER RELEASE

The paper release is located at the top left-hand corner of the movable carriage

assembly. When this lever is pulled forward, the paper can be straightened or
removed.

LINE SPACER

To the right of the paper release lever is a lever which permits selection of
single-, one and one-half-, or double-spacing between lines.

PLATEN

The platen is a roller-type device which holds the paper against which the type
bars strike.

CARRIAGE RELEASE (Right and Left)

There are two Carriage Release buttons, one located to the right and one to
the left of the platen. When either or both are held down, the entire carriage
assembly can be freely moved. The carriage should not be moved when power
is OFF.

PLATEN KNOBS (Right and Left)

The platen knobs, located at each end of the platen, are used for turning the
platen forward or backward.

B-3

B-4

PLATEN VARIABLE

When this button, located in the center of the left platen knob, is depressed, the
platen is released to allow the operator to position the paper at other than stan-
dard line spacing. Releasing the button restores standard line spacing.

MARGIN RELEASE

This lever, which-is located behind the left platen knob, can be raised to move
the carriage to the left of the margin stop.

RIBBON POSITIONER

The ribbon position lever, located on the right side of the typewriter below the
carriage, positions the ribbon for typing through its upper or lower part or for
typing stencils.

SPACE

This bar moves the carriage forward one character space.

COND STOP (')

This key is used to punch a Conditional Stop code (') into paper tape. When sens-
ed by the tape reader, this code stops the reader and sends a start signal to the
computer.

TAB

This key moves the carriage to the next established tab position.

COLOR SHIFT

This key shifts and locks the ribbon for typing through its upper or lower half.
CAR RET

This key returns the carriage to the left margin and spaces the paper to the next
typing line.

BACK SPACE
This key moves the carriage back one character space each time it is depressed.
LOWER CASE, UPPER CASE

These keys lock the keyboard in position for typing lower or upper case charac-
ters. LOWER and UPPER CASE keys are provided on both sides of the keyboard.

TAPE INTERLOCK

The punch contains a tape interlock that stops the device if the tape breaks or if
the supply is exhausted.

FEED KNOBS (Reader and Punch)
The reader and punch feed knobs are located to the left of the read and punch

heads, respectively. These knobs can be used to manually move tape forward
or backward.

APPENDIX

A NN NN AR AN NN AR AN A AN AN A AN AN AN A AN AN AN AN NN AN AN NN AN NN NN NN NN NN NN N

TABLE | Command and Address Equivalences

TABLE Ia Command Equivalences

Symbol Command
Z Stop, Sense and Transfer
B Bring
Y Store Address
R Set Return Address

Input, Shift Left

D Divide

N Multiply: Save Right
M Multiply: Save Left
P Print

E Extract

U Unconditional Transfer
T Conditional Transfer
H Hold

¢ Clear

A Add

S Subtract

Binary Hexadecimal Decimal
0000 0 1
0001 1 2
0010 2 3
0011 3 4
0100 4 5
0101 5 6
0110 6 7
0111 7 8
1000 8 9
1001 9 10
1010 F 11
1011 G 12
1100 J 13
1101 K 14
1110 Q 15
1111 W 16

C-2

TABLE Ib Address Equivalences

DECIMAL HEXADECIMAL DECIMAL HEXADECIMAL
Track Sector Track Sector
0 00 00 32 20 80
1 01 04 33 21 84
2 02 08 34 22 88
3 03 0j 35 23 8j
4 04 10 36 24 90
5 05 14 37 25 94
6 06 18 38 26 98
7 07 1j 39 21 9j
8 08 20 40 28 fo
9 09 24 41 29 f4
10 of 28 42 2f £8
11 0g 2j 43 2g fj
12 0j 30 44 2j g0
13 0k 34 45 2k g4
14 0q 38 46 2q g8
15 ow 3j 47 2w gj
16 10 40 48 30 jo
17 11 44 49 31 j4
18 12 48 j8
19 13 4j 3% 3 RA]
20 14 50 52 34 ko
21 15 54 53 35 k4
22 16 58 54 36 k8
23 17 5j 55 37 kj
24 18 60 56 38 q0
25 19 64 57 39 q4
26 1f 68 58 3f q8
27 ig 6] 59 3g qj
28 1j 70 60 3] wo
29 1k 74 61 3k w4
30 1q 78 62 3q w8
31 1w 7] 63 3w wj

[

TABLE Il Powers of 2

o W N S

16

67
134

268
536
1 073
2 147

65
131
262
524

048
097
194
388

777
554
108
217

435
870
741
483

216

864
728

456
912
824
648

wWNHFO B

-3 o L

(=N No]

oo oo

oo0ooo

o O oo

oo oo (=B =R~3

o O oo

o o oo

.000

.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

25
125

062 5
531 25
265 625
632 812

316 406
158 203
579 101
289 550

644 775
322 387
161 193
580 596

290 298
645 149
322 574
661 287

25

125
562
781

390
695
847
923

461
230
615
307

625
312
656
828

914
957
478
739

25
I25

062
031
515
257

25
625
812 5

c-3

TABLE Il Input/Output Codes

TABLE IIla Input/Output Codes for the 121 Typewriter
Character . Tape Codes Input Codes Output Codes
Codes 6 1234 5 1234 56 1234 56
Tape Feed 0 0000 0 *oooo 00
) 0 0 0000 1 0000 10 0000 10
L il 0 0001 1 0001 10 0001 10
* 2 0 0010 1 0010 10 0010 10
" 3
A 4 e e ww i uu
%
$ 5 6 0 A Wi wn (0L oue Wi
L
X 7 8 0o 1 (L u wn (e nw
(9 0 1001 1 1001 10 1001 10
F f 0 1010 1 1010 10 1010 10
G g 0 1011 1 1011 10 1011 10
J . 0 1100 1 1100 10 1100 10
S

Q k g LA U1 1 W e mrme uy
W w 0 1111 1 1111 10 1111 10
Z z 1 0000 0 0000 01 0000 01
B b 1 0001 0 0001 01 0001 01
¥ Y 1 0010 0 0010 01 0010 01
R r 1 0011 0 0011 01 0011 01
I 1 1 0100 0 0100 01 0100 01
D d 1 0101 0 0101 01 0101 01
N n 1 0110 0 0110 01 0110 01
M m 1 0111 0 0111 01 0111 01
P P 1 1000 0 1000 01 1000 01
E e 1 1001 0 1001 01 1001 01
U u 1 1010 0 1010 01 1010 01
T t 1 1011 0 1011 01 1011 01
H h 1 1100 0 1100 01 1100 01
c [1 1101 0 1101 01 1101 01
A a 1 1110 0 1110 01 1110 01
S S 1 1111 0 1111 01 1111 01
Lower Case 0 0001 0 "0001 00 0001 00
Upper Case 0 0010 0 *0010 00 0010 00
Color Shift 0 0011 0 *0011 00 0011 00
Car. Return 0 0100 0 *0100 00 0100 00
Back Space 0 0101 0 *0101 00 0101 00
Tab 00 0 0110 0 *0110 00 0110 00
Cond. Stop 0 1000 0 1000 00
Space 1 0000 1 0000 11 0000 11

1 0001 1 0001 11 0001 11
= + 1 0010 1 0010 11 0010 11

1 0011 1 0011 11 0011 11
£ 3 .
rT / Comumm 0110 III H I
v v 1 0111 1 0111 11 0111 11
0 0 1 1000 1 1000 11 1000 11
X 1 1001 1 1001 11 1001 11
Delete 1 1111 1

*6-bit input only

c-4

I
RS

—
i
|

TABLE IIIb Additional Input/Output Codes

In addition to the codes in Table IIla, the following codes can be output by the
computer through the 151 Punch and input through the 141 Reader.

be input or output via the 121 Typewriter.

They cannot

Tape Feed

Code Delete

Tape Code

6

0

0

12345

00000

01110

10010

10100

10110

11000

11010

11100

11110

10101

10111

11001

11011

11101

1111L

Input Code
1234 56

*0000 00
*0111 00
*1001 00
*1010 00
‘1011 00
*1100 00
*1101 00
*1110 00
*1111 00
1010 11
1011 11
1100 11
1101 11

1110 11

*6-bit input only

Output Code

1234

0000

0111

1001

1010

1011

1100

1101

1110

1111

1010

1011

1100

1101

1110

1111

56

00

00

00

00

00

00

00

00

00

11

11

11

11

11

i 4

C-5

